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Abstract

One in five experiences hearing loss. The World Health Organization estimates
that this number will increase to one in four in 2050. Luckily, effective hearing
devices such as hearing aids and cochlear implants exist with advanced noise
suppression and speaker enhancement algorithms that can significantly improve
the quality of life of people suffering from hearing loss. State-of-the-art hearing
devices, however, underperform in a so-called ‘cocktail party’ scenario, when
multiple persons are talking simultaneously. In such a situation, the hearing
device does not know which speaker the user intends to attend to and thus
which speaker to enhance and which other ones to suppress. Therefore, a new
problem arises in cocktail party problems: determining which speaker a user is
attending to, referred to as the auditory attention decoding (AAD) problem.

The problem of selecting the attended speaker could be tackled using simple
heuristics such as selecting the loudest speaker or the one in the user’s look
direction. However, a potentially better approach is decoding the auditory
attention from where it originates, i.e., the brain. Using neurorecording
techniques such as electroencephalography (EEG), it is possible to perform
AAD, for example, by reconstructing the attended speech envelope from the
EEG using a neural decoder (i.e., the stimulus reconstruction (SR) algorithm).
Integrating AAD algorithms in a hearing device could then lead to a so-called
‘neuro-steered hearing device’. These traditional AAD algorithms are, however,
not fast enough to adequately react to a switch in auditory attention, and are
supervised and fixed over time, not adapting to non-stationarities in the EEG
and audio data. Therefore, the general aim of this thesis is to develop novel
signal processing algorithms for EEG-based AAD that allow fast, accurate,
unsupervised, and time-adaptive decoding of the auditory attention.

In the first part of the thesis, we compare different AAD algorithms, which allows
us to identify the gaps in the current AAD literature that are partly addressed
in this thesis. To be able to perform this comparative study, we develop a new
performance metric - the minimal expected switch duration (MESD) - to evaluate
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AAD algorithms in the context of adaptive gain control for neuro-steered hearing
devices. This performance metric resolves the traditional trade-off between AAD
accuracy and time needed to make an AAD decision and returns a single-number
metric that is interpretable within the application-context of AAD and allows
easy (statistical) comparison between AAD algorithms. Using the MESD, we
establish that the most robust currently available AAD algorithm is based on
canonical correlation analysis, but that decoding the spatial focus of auditory
attention from the EEG holds more promise towards fast and accurate AAD.
Moreover, we observe that deep learning-based AAD algorithms are hard to
replicate on different independent AAD datasets.

In the second part, we address one of the main signal processing challenges
in AAD: unsupervised and time-adaptive algorithms. We first develop an
unsupervised version of the stimulus decoder that can be trained on a large
batch of EEG and audio data without knowledge of ground-truth labels on the
attention. The unsupervised stimulus decoder is iteratively retrained based on
its own predicted labels, resulting in a self-leveraging effect that can be explained
by interpreting the iterative updating procedure as a fixed-point iteration. This
unsupervised but subject-specific stimulus decoder, starting from a random
initial decoder, outperforms a supervised subject-independent decoder, and,
using subject-independent information, even approximates the performance of a
supervised subject-specific decoder. We also extend this unsupervised algorithm
to an efficient recursive time-adaptive algorithm, when EEG and audio are
continuously streaming in, and show that it has the potential to outperform a
fixed supervised decoder in a practical use case of AAD.

In the third part, we develop novel AAD algorithms that decode the spatial
focus of auditory attention to provide faster and more accurate decoding. To
this end, we use both a linear common spatial pattern (CSP) filtering approach
and its nonlinear extension using Riemannian geometry-based classification
(RGC). The CSP method achieves a much higher accuracy compared to the
SR algorithm at a very fast decision rate. Furthermore, we show that the CSP
method is the preferred choice over a similar convolutional neural network-based
approach, and is also applicable on different directions of auditory attention, in
a three-class problem with different angular domains, using only EEG channels
close to the ears, and when generalizing to data from an unseen subject. Lastly,
the RGC-based extension further improves the accuracy at slower decision rates,
especially in the multiclass problem.

To summarize, in this thesis we have developed crucial building blocks for a
plug-and-play, time-adaptive, unsupervised, fast, and accurate AAD algorithm
that could be integrated with a low-latency speaker separation and enhancement
algorithm, and a wearable, miniaturized EEG system to eventually lead to a
neuro-steered hearing device.
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Beknopte samenvatting

Een op vijf ervaart gehoorverlies. De Wereldgezondheidsorganisatie schat
dat dit aantal zal toenemen tot een op vier in 2050. Gelukkig bestaan er
effectieve hoortoestellen zoals hoorapparaten en cochleaire implantaten met
geavanceerde ruisonderdrukkingsalgoritmen die de levenskwaliteit van mensen
met gehoorverlies significant kunnen verbeteren. State-of-the-art hoortoestellen
presteren echter ondermaats in een zogenaamd ‘cocktail party’ scenario, waarin
meerdere personen tegelijkertijd aan het spreken zijn. In een dergelijke situatie
weet het hoortoestel niet naar welke spreker de gebruiker wil luisteren. Bijgevolg
weet het niet welke spreker versterkt en welke andere sprekers onderdrukt
moeten worden. Dit leidt tot een nieuw probleem in het cocktail party scenario:
bepalen naar welke spreker een gebruiker luistert. Dit heet het auditieve
aandachtsdecodering (AAD) probleem.

De spreker waarvoor aandacht is kan geïdentificeerd worden met behulp van
eenvoudige heuristieken zoals het selecteren van de luidste spreker of de spreker
in de kijkrichting van de gebruiker. Een mogelijk betere oplossing is het
decoderen van de auditieve aandacht daar waar het ontstaat of plaatsvindt,
namelijk de hersenen. De auditieve aandacht kan gedecodeerd worden door,
bijvoorbeeld, de omhullende van het spraaksignaal waarvoor aandacht is te
reconstrueren uit het elektro-encefalogram (EEG) met een neurale decoder (dit
is het stimulusreconstructie (SR)-algoritme). De integratie van AAD-algoritmen
in een hoortoestel zou dan kunnen leiden tot een zogenaamd ‘neurogestuurd
hoortoestel’. Traditionele AAD-algoritmen werken helaas niet snel genoeg om
adequaat te reageren op een verandering in auditieve aandacht. Bovendien
zijn ze gesuperviseerd en stationair in de tijd, waardoor ze zich niet kunnen
aanpassen aan niet-stationariteiten in de EEG- en audiodata. Daarom is de
globale doelstelling van deze thesis om nieuwe signaalverwerkingsalgoritmen
te ontwikkelen voor EEG-gebaseerde AAD die snelle, nauwkeurige, niet-
gesuperviseerde en tijdsadaptieve decodering van de auditieve aandacht mogelijk
maken.
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In het eerste deel van de thesis vergelijken we verschillende AAD-algoritmen,
wat ons toelaat de hiaten in de huidige AAD-literatuur te identificeren die
gedeeltelijk in deze thesis worden opgevuld. Om deze vergelijkende studie te
kunnen uitvoeren, ontwikkelen we een nieuwe performantiemetriek - de minimaal
verwachte omschakelduurtijd (MESD) - om AAD-algoritmen te evalueren in de
context van adaptieve versterkingsregeling voor neurogestuurde hoortoestellen.
Deze performantiemetriek vindt een balans in de traditionele afweging tussen
de nauwkeurigheid van het AAD-algoritme en de tijd die nodig is om een
AAD-beslissing te nemen. Er wordt één getal berekend dat interpreteerbaar is
in de context van AAD en een gemakkelijke (statistische) vergelijking tussen
AAD-algoritmen faciliteert. Met behulp van de MESD tonen we aan dat het
meest robuuste AAD-algoritme dat momenteel beschikbaar is gebruikmaakt van
canonieke correlatieanalyse, maar dat het decoderen van de spatiale focus van
auditieve aandacht uit het EEG veelbelovender is voor snelle en nauwkeurige
AAD. Bovendien stellen we vast dat resultaten van AAD-algoritmen gebaseerd op
diepe neurale netwerken moeilijk te repliceren zijn op verschillende onafhankelijke
AAD-datasets.

In het tweede deel gaan we in op een van de belangrijkste uitdagingen op het
gebied van signaalverwerking in AAD: niet-gesuperviseerde en tijdsadaptieve
algoritmen. We ontwikkelen eerst een niet-gesuperviseerde versie van de
stimulusdecoder, die getraind kan worden op een grote hoeveelheid EEG- en
audiodata zonder kennis van de juiste labels over de auditieve aandacht. De
niet-gesuperviseerde stimulusdecoder wordt iteratief hertraind op basis van
zijn eigen voorspelde labels, wat resulteert in een zelfversterkend effect dat
verklaard kan worden door de iteratieve updatingsprocedure te interpreteren
als een vaste-punt iteratie. Deze niet-gesuperviseerde maar subject-specifieke
stimulusdecoder, startende van een willekeurige decoder, presteert beter dan een
gesuperviseerde subject-onafhankelijke decoder en benadert zelfs de performantie
van een gesuperviseerde subject-specifieke decoder wanneer we gebruikmaken
van subject-onafhankelijke informatie. We breiden dit niet-gesuperviseerde
algoritme ook uit naar een efficiënt recursief tijdsadaptief algoritme voor in het
geval dat EEG- en audiodata continu binnenstromen, en laten zien dat het het
potentieel heeft om in een praktische toepassing van AAD beter te presteren
dan een stationaire, gesuperviseerde decoder.

In het derde deel ontwikkelen we nieuwe AAD-algoritmen die de spatiale focus
van auditieve aandacht decoderen om een snellere en nauwkeurigere decodering
te bekomen. Hiertoe gebruiken we zowel een lineaire gemeenschappelijke
spatiale patronen (CSP)-filtering methode als de niet-lineaire uitbreiding
ervan gebruikmakende van riemann-geometriegebaseerde classificatie (RGC).
De CSP-methode bereikt aan een zeer hoge beslissingssnelheid een veel
hogere nauwkeurigheid in vergelijking met het SR-algoritme. Verder tonen
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we aan dat de CSP-methode de voorkeur wegdraagt ten opzichte van een
vergelijkbare methode gebaseerd op een convolutioneel neuraal netwerk en
ook toepasbaar is wanneer er verschillende richtingen van auditieve aandacht
zijn, in een drieklassenprobleem met verschillende spatiale domeinen, wanneer
alleen EEG-kanalen dicht bij de oren worden gebruikt en bij generalisatie
naar data van een nieuwe gebruiker. Ten slotte verbetert de RGC-gebaseerde
uitbreiding de nauwkeurigheid aan tragere beslissingssnelheden, vooral in het
meerklassenprobleem.

In deze thesis hebben we cruciale bouwstenen ontwikkeld voor een plug-and-
play, tijdsadaptief, niet-gesuperviseerd, snel en nauwkeurig AAD-algoritme
dat geïntegreerd kan worden met een snel ruisonderdrukkingsalgoritme en een
draagbaar, geminiaturiseerd EEG-systeem om uiteindelijk te leiden tot een
neurogestuurd hoortoestel.
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1 | Introduction

1.1 The story of Herman on Christmas Day

On Christmas Day 2021, we were able to celebrate Christmas with family once
again after we needed to skip various family dinners due to the COVID-19
pandemic. We were 15 people, and everyone was happy and relieved that we
could again celebrate together. The pater familias is Herman, 85 years old and
the grandfather of my partner. He seemed cheerful, especially once one of his
great-granddaughters entered the stage. Sometimes, however, he appeared to
be a bit off, and we needed to specifically address him to involve him in the
conversations. Nevertheless, we had a wonderful day, and everyone went home
satisfied.

Two days later, we visited Herman at home. He welcomed us by telling us
how happy he was that we were visiting him at home, without other family
members - except his wife - present. He appeared much more cheerful than on
Christmas Day. Herman suffers from hearing loss. For almost ten years now,
he has a hearing aid that amplifies sound. As he is describing the feeling when
he could hear birds singing again, it becomes clear that hearing aid technology
has a significant impact on his quality of life. After a while, he admitted that,
while he was happy to see the whole family together on Christmas Day, he
was feeling sad himself. He estimated that he could only follow 25% of the
conversations. Herman’s hearing aid did not know which person or conversation
he wanted to listen to. He experienced a chaotic mix of voices that he could not
disentangle. He shut himself off and felt lonely as he was unable to participate
in any conversation, while he saw his family engaged in all these lively talks
around him. It explains why, every single time, he stresses how grateful he is
when we are visiting him at home without other family members.
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1.2 The auditory attention decoding problem

The World Health Organization estimates that one in five people worldwide
experiences some form of hearing loss, of which, like Herman, around 27%
requires rehabilitation [6]. Due to population growth and aging, they expect
that 2.5 billion people, or one in four, will experience hearing loss in 2050, and
more than 7% of the world’s population will require rehabilitation. Hearing
loss has a tremendous impact on society, both on an individual and economic
level. On an individual level, unaddressed hearing loss hampers the ability to
communicate. For children, this can severely impact their language development,
which negatively impacts their cognitive and social development. Furthermore, it
increases the probability of unemployment and generally induces social isolation
and loneliness, heavily impacting mental health. On an economic level, the
World Health Organization estimates that the annual global cost of unaddressed
hearing loss amounts up to 980 billion dollars across all sectors of society [6].

Assistive hearing devices, such as hearing aids (HA) and cochlear implants (CI),
try to rehabilitate people with hearing loss by restoring communication. They
effectively improve speech intelligibility and therefore significantly improve the
quality of life of people suffering from hearing loss, and, moreover, in a cost-
effective way [6]. While these hearing devices have improved in the past decades
by including more advanced speech enhancement, directional beamforming,
and noise suppression technology, current state-of-the-art hearing devices still
lack a fundamental piece of knowledge in so-called ‘cocktail party’ scenarios,
i.e., when multiple persons are talking simultaneously (Figure 1.1). In such
a cocktail party scenario, normal-hearing people have the remarkable ability
to focus on one specific speaker, even in very challenging acoustic scenarios
(for example, in the presence of a lot of reverberation or noise) [7, 8]. While
advanced speech enhancement algorithms exist to suppress acoustic background
noise and enhance one speaker out of a speech mixture, they generally do not
know what speaker to target. In other words, current hearing devices do not
know which speaker should be treated as the attended speaker (i.e., the person
the hearing device user wants to listen to) and which other speaker(s) should
be treated as acoustic background noise and should thus be suppressed. We
refer to this problem as the auditory attention decoding (AAD) problem:

Section 1.2 is partly based on the introduction of [5].
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Figure 1.1: An illustration of a typical cocktail party scenario, such as a family dinner.
This thesis tackles the AAD problem using brain signals to enhance the correct,
attended speaker. This illustration is kindly provided by Debora Fieberg.

The auditory attention decoding problem

The auditory attention decoding (AAD) problem consists of determining
to which sound source out of multiple simultaneously active sound sources
a listener intends to attend to.

In this thesis, we consider these sound sources to be speech signals, although
other sources, such as music [9–16], are also studied in this context. Furthermore,
for the sake of an easy exposition, we assume that there are two competing
speakers. Generally, the presented algorithms and technology are generalizable
to more than two competing speakers, unless mentioned or discussed otherwise.

The problem of selecting the attended speaker can be addressed using simple
heuristics, e.g., based on look direction, or by selecting the loudest speaker or
the speaker in front of the listener. However, these simple heuristics often fail in
several practical scenarios, as it would, for example, require the user to always
(uncomfortably) turn towards the target. This is, moreover, not always possible,
for example, when listening to a public address system or a passenger when
driving a car. In those scenarios, the heuristic could select the wrong speaker,
thereby enhancing speech of a speaker the listener does not want to listen to.
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A potentially better and more ideal strategy would be to extract the attention-
related information from the brain, where the auditory attention originates by
focusing sensory and cognitive resources towards a specific stimulus, driven both
by bottom-up, stimulus-driven factors and top-down, goal-directed factors [17].
Recent neuroscientific insights have confirmed that this is possible, for example,
by showing that certain characteristics of the speech signal of the attended
speaker are (better) encoded in the brain (see Sections 1.5 and 1.6). Following
these groundbreaking advances in auditory neuroscience, research towards AAD
from the brain has gained traction in the neural engineering community in the
past ten years, which could lead to a new assistive solution for the hearing
impaired: a neuro-steered hearing device (see Section 1.7). Decoding the auditory
attention from the brain is the central problem that is tackled in this thesis
(Figure 1.1).

1.3 The brain and neurorecording techniques

1.3.1 The brain

The human brain largely consists of three parts: the brainstem, the cerebellum,
and the cerebral cortex or cerebrum, which is divided into four lobes: the
frontal, parietal, occipital, and temporal lobe (Figure 1.2). Each of these lobes
is typically connected to different functionalities. The frontal lobe is related to
cognitive functions such as reasoning and control of movements. The parietal
lobe integrates sensory information, such as touch, taste, etc. The occipital
lobe is mainly dedicated to visual information processing, while the temporal
lobe is dedicated to auditory information processing as it contains the primary
auditory cortex.

On a microscopic level, the most important cells of the cerebral cortex are
neurons, the basic information processing units of our brain. A neuron consists
of three parts: the soma or cell body, a long axon, and the dendrites (Figure 1.2).
Each neuron is via its dendrites connected to the axon terminals of several other
neurons via synapses, and communicates with these other neurons through
electrical signals. If the dendrites of a neuron receive enough inputs (via
neurotransmitters) from neighboring neurons, an electrical impulse, called an
‘action potential’, is triggered and travels via the neuron’s axon to the axon’s
terminal where it can excite other neurons. This action potential traveling down
the neuron is also referred to as the neuron ‘firing’. Typically, the axon’s body
is covered by a myelin sheath, which acts as an insulator and enables the very
high speed with which the action potentials travel down the axon. While the
neuron is a quite basic information processing unit that communicates via a
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binary all-or-nothing signal, the strength of the human brain comes from the
connectivity of billions of neurons. It is estimated that the adult male human
brain contains on average 86 billion or 86 000 000 000 neurons, of which 19% is
located in the cerebral cortex [18]. Given that each neuron can be connected to
thousands of other neurons, there is an astounding number of approximately
0.15 quadrillion (1015) connections in the cerebral cortex [19]. These connections
are, however, not fixed. One of the most crucial features of the human brain is
its plasticity. The ability of neurons to adapt and make new connections, for
example, via dendritic growth, form the basis of this neuroplasticity.

The computational power of the human brain. Because of its
billions of neurons and quadrillions of connections, the human brain is
a very powerful biological computer. Although hard to compare and
quantify, it is estimated that the human brain operates at around one
exaFLOPS (1018 floating-point operations per second) [20]. As the result
of the exponential increase in computational power of (super)computers,
as observed by Moore’s law, in theory, this computational power can be
matched by the most powerful currently available supercomputers, such
as the Fugaku supercomputer [21]. Cutting many corners, one could
thus say that one human (brain) is as powerful as the most powerful
current supercomputer (supercomputers are, evidently, scarce). Note,
however, that the fact that a supercomputer matches the human brain
in FLOPS does not mean that it can perform the same tasks as a
human. Apart from the hardware, this additionally requires the correct
software, which is very challenging to create (for example, as it would
require a tremendous amount of training data/information in real-world
conditions). Moreover, the human brain is highly adaptive and flexible
because of the neuroplasticity, and is a very volume- and power-efficient
biological computer compared to supercomputers, making it even more
remarkable.

1.3.2 Neurorecording techniques

Electroencephalography

As explained in Section 1.3.1, the neurons in the brain are continuously firing,
generating electrical action potentials. Using electroencephalography (EEG)
sensors on the scalp, the electrical activity generated within the brain can be
measured as a voltage between two electrodes (Figure 1.2). The difference
between two electrode voltages is called an ‘EEG channel’. However, as these
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Band Range Associated with
δ ≤ 4 Hz deep sleep
θ 4-8 Hz meditative concentration, drowsiness,

mental calculation
α 8-12 Hz mental effort, inattention, daydreaming, closed eyes
β 12-30 Hz attention processing [25], active attention and

thinking, motor activities
γ ≥ 30 Hz perception, motor functions

Table 1.1: The EEG is traditionally described as consisting of different frequency
bands, each associated with a specific frequency range and different functions. A
non-exhaustive list of associated functions is given (based on [26]).

sensors are non-invasively placed on the scalp, measuring action potentials from
individually firing neurons is impossible. The EEG is instead the summation of
thousands of spatially aligned neurons that are synchronously firing. Moreover,
primarily the activity of pyramidal neurons near the scalp that are oriented
perpendicularly to the brain’s surface is picked up [24].

EEG frequency bands EEG signals are traditionally described as consisting
of five distinct frequency bands, in increasing order of frequency: the δ-, θ-, α-,
β-, and γ-band. Table 1.1 gives an overview of these different frequency bands,
including their ranges and characteristics.

Measurement system EEG electrodes are usually placed on the scalp
according to the internationally standardized 10-20 system. This standardization
refers to the distances between the electrodes across the scalp between the nasion
(nose bridge) and inion (bump on the back of the head). Each electrode is
denoted with a letter, corresponding to the different cortical lobes (F = frontal,
C = central, T = temporal, P = parietal, O = occipital), and a number,
indicating the hemisphere on which the electrode lies (odd = left, even = right).
Electrodes positioned on the midline of the scalp are indicated with a ‘z’ [24].

Many different EEG systems exist, from high-density layouts with more than
64 up to 256 (wired) electrodes positioned at proportional distances within
the 10-20 system to more wearable and miniaturized EEG setups with a lower
number of (wireless) electrodes. Furthermore, there exist both wet-electrode
systems, which require electrode gel and thus hamper applicability, and dry-
electrode systems, which are easier to apply and thus more suited for chronic
neurorecording [27]. The gel used in wet systems enhances conductivity between
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Figure 1.3: In this thesis, we mostly use the 64-channel BioSemi ActiveTwo EEG
recording system, with its layout displayed here.

the skin and electrodes, reducing the impedance (which can be seen as a signal
quality indicator) [24, 26]. In this thesis, we mostly use a state-of-the-art
64-channel BioSemi ActiveTwo EEG recording system1 (Figure 1.3). Other,
more wearable systems are, for example, the 24-channel SMARTING system of
mBrainTrain2, and miniaturized EEG devices, such as in-ear [28,29], around-
the-ear [30], or flex-printed forehead [31] EEG systems.

There exist many different EEG montages, which define to which electrode
pairs EEG channels correspond (remember that EEG channels represent voltage
differences between electrodes). In a bipolar montage, neighboring electrodes
are used to define the different channels, while in a referential montage, a fixed
reference electrode is used with respect to all other electrodes [24]. Common
choices of the reference electrode are the Cz electrode, the mastoid electrodes,
or a common average reference, where the reference signal equals the average
across all electrodes.

Disadvantages The two main disadvantages of EEG as a neurorecording
technique are the following:

1www.biosemi.com
2www.mbraintrain.com

8

www.biosemi.com
www.mbraintrain.com


1.3 The brain and neurorecording techniques

1. Low spatial resolution: As the EEG sensors only measure the summed
activity of thousands of neurons, which is, moreover, smeared out due
to its propagation through the cerebrospinal fluid and scalp, EEG has
a low spatial resolution. Furthermore, only activity close to the scalp
of well-oriented neurons is measured, while deeper sources are hardly
picked up. The spatial resolution is generally estimated in the order of
10 mm [26].

2. Low signal-to-noise ratio: EEG is known for its notoriously low signal-
to-noise ratio (SNR). The neural signals of interest are often buried
under irrelevant brain activity or other interferences. This can happen
because the neural signals of interest are non-favorably located or oriented
(see the previous paragraph) but also because of artifacts, which can be
induced physiologically or non-physiologically. Examples of physiological
artifacts are eye movements (e.g., blinks, lateral movements), muscle
activity (e.g., jaw clenching, chewing) and movements, and sweat. Non-
physiological artifacts result, e.g., from cable movements, electrode pop,
or nearby electrical devices (causing, for example, powerline interference).
Several signal processing algorithms exist to remove these artifacts after
recording [32], e.g., based on a multi-channel Wiener filter (MWF) [33],
independent component analysis (ICA) [34], or canonical correlation
analysis (CCA) [35].

Advantages Despite these disadvantages, EEG is the most popular neu-
rorecording technique [26]. It has been used in many brain-computer interface
(BCI) applications, such as neuroprosthetic control and text-input systems for
rehabilitation of paralyzed people, gaming, etc. [36–38]. This popularity is
mainly due to the following four advantages:

1. High temporal resolution: Compared to other neurorecording
techniques, EEG has a very high temporal resolution, generally estimated
in the order of 0.01 s [26, 39]. This is a crucial feature in several BCIs,
where real-time processing is essential.

2. Non-invasiveness: EEG sensors are attached to the scalp, with a
relatively fast and easy setup. This is a crucial ingredient for the
widespread usage of EEG, for example, in combination with hearing
devices.

3. Wearability: Several wearable, concealable EEG systems have been
developed in the past decades, showing its (potential) portability. This
is again a crucial ingredient for the widespread usage of EEG in chronic
neurorecording applications, for example, during daily-life activities.
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4. Relatively low cost: Although Hans Berger, the German psychiatrist
that invented the EEG in 1924, in the last footnote of his first paper on
EEG complained about the high cost of the required instrumentation [40],
the technological advancements of the 20th and 21th century have
made EEG a relatively cheap technology, especially compared to other
neurorecording technologies [26].

Other neurorecording techniques

Many other neurorecording techniques exist, which all serve their purposes. An
overview of the different properties of the discussed neurorecording techniques
can be found in Table 1.2. Techniques such as near-infrared spectroscopy
(NIRS) (i.e., optically measuring fluctuations in cerebral oxygenation) or
functional magnetic resonance imaging (fMRI) (i.e., measuring changes in
cerebral blood flow) provide an indirect measure of neural activity and
have a low temporal resolution [26], making them less suited for (real-time)
AAD. Magnetoencephalography (MEG) and electrocorticography (ECoG) have,
however, already been used in AAD studies (with MEG: e.g., [41–44], with
ECoG: e.g., [45–50]). MEG non-invasively measures the magnetic activity
generated by firing neurons. As opposed to EEG, MEG provides a better
spatial resolution in the order of 5 mm and a higher SNR, which is mainly
because magnetic fields are less distorted by the scalp [26]. However, its biggest
disadvantage is that it is very costly and not wearable, as it requires a bulky
setup in a magnetically shielded room3. ECoG is an invasive technique that
measures the electrical activity of firing neurons on the surface of the cortex,
below the scalp. As such, it can be seen as an invasive version of EEG. As
a result, the temporal and spatial resolution, and SNR are better than in
EEG. Potentially, this can also be combined with stereotactically inserted depth
electrodes to record brain activity at deeper sites in the cortex. However, the
invasive nature of this technique makes it less suited for widespread employment
in daily-life usage, for example, in combination with hearing devices.

The advantages of EEG and disadvantages of other neurorecording techniques
motivate why we choose EEG as a neurorecording technique for AAD.

3Some initial steps towards wearable MEG have recently been taken, however, still with
very limited mobile applicability [51].
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1.4 The auditory system

Method Activity
measured

(In)direct
measurement

Temporal
resolution

Spatial
resolution

Invasive? Wearable? Cost

EEG electrical direct ∼ 0.01 s ∼ 10 mm no yes low
MEG magnetic direct ∼ 0.01 s ∼ 5 mm no no high
ECoG electrical direct ∼ 0.001 s ∼ 1 mm yes yes high
NIRS metabolic indirect ∼ 1 s ∼ 5 mm no yes low
fMRI metabolic indirect ∼ 1 s ∼ 1 mm no no high

Table 1.2: The properties of the different neurorecording techniques, based on [26,39].

1.4 The auditory system

The human auditory system, which transforms vibrations of air molecules (sound)
to electrical signals, is divided into four hierarchical parts, each providing a more
complex processing of the original sound4 (Figure 1.4). The outer peripheral
part comprises the outer ear, middle ear, and inner ear. The fourth part is the
auditory pathway in the brain. The outer ear consists of the pinna, which is
important in localizing sounds [53], and the ear canal. As a sound wave travels
through the ear canal, it causes the tympanic membrane, which lies on the
border of the outer and middle ear, to vibrate. A chain of three small bones
in the middle ear, called the ossicles, amplify these vibrations and transmit
them to the inner ear via the oval window. As the most important component
of the inner ear, the spiral-shaped cochlea, contains fluids, the vibrations are
transformed into fluctuations in the cochlear fluids. This causes the basilar
membrane in the cochlea to move in a frequency-dependent manner. One could
compare it, therefore, to a filterbank. As a result, the (inner) hair cells within
the organ of Corti are displaced and release neurotransmitters as a response to
these mechanical movements. These neurotransmitters then excite the neurons
in the nerve fibers of the auditory nerve (similarly to Section 1.3.1). From
thereon, the sound travels via neurons firing through the auditory pathway in
the brain, from the auditory nerve, via the brainstem, to the primary auditory
cortex, where higher-order processing of the sound takes place.

1.4.1 Listening in a cocktail party scenario

In a cocktail party scenario, such as in Figure 1.1, normal-hearing people can
focus on one specific speaker and ignore all other sound sources [7, 17]. The
human auditory system is essentially capable of performing auditory scene
analysis in complex acoustic scenarios [55]. To this end, both monaural
(i.e., which could be exploited with one ear only, such as pitch and intensity

4The following description of the auditory system is largely based on [52].
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Figure 1.4: The anatomy of the human auditory system, which consists of the outer,
middle, and inner ear (peripheral part), and the auditory pathway in the brain.
Created with [54].

fluctuations) and binaural (i.e., which can only be exploited using both ears,
such as interaural level and time differences - ‘spatial’ hearing) cues of the
to-be-attended sound source can be used [56,57]. The exploitation of binaural
cues and auditory spatial information happens up the auditory pathway in the
cortex, where the information coming from both ears is integrated to perform
sound localization [53]. These binaural cues become more important to focus on
a specific speaker in complex acoustic scenarios. This is called ‘spatial release
from masking’ (you can try this out yourself by plugging one ear in a cocktail
party scenario). On the other hand, this spatial release from masking becomes
less important when speakers can be easily separated, for example, based on
monaural cues [53,56–62].

1.4.2 Hearing loss

In its essence, hearing loss means that there is damage somewhere along the
auditory pathway. There are several types of hearing loss, e.g., sensorineural
(damage in the inner ear, for example, in the hair cells), conductive (damage
in the outer or middle ear), central (in the auditory pathway of the brain),
or a mix. There is a high correlation between sensorineural hearing loss and
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1.5 Neural tracking of the speech signal

age [6,63]. While the damage mainly occurs in the outer peripheral part, changes
can also occur higher up the auditory pathway in the brain. As explained in
Section 1.3.1, our brain has the remarkable ability to adapt itself. Because of
this neuroplasticity, the brain can even, to some extent, adapt to the hearing
loss and a potential hearing device [64]. Furthermore, it explains why it is
crucial for hearing device users to use their devices at all times to maximally
leverage this neuroplasticity (Herman, however, does not always use his HA,
regardless of how many times we explain him why it is important).

One of the most important rehabilitation strategies for hearing loss is hearing
technology such as HAs and CIs. The most frequently used technology
is a HA, which amplifies the recorded sounds and delivers them through
the ear canal to the tympanic membrane. It is a non-invasive, safe, and
very (cost-)effective rehabilitation strategy [6]. A CI can be used when the
conventional HA does not offer a solution. CIs are surgically implanted and
bypass the peripheral part of the auditory system to directly stimulate the
auditory nerve electrically [6]. While these hearing devices significantly improve
the speech intelligibility in simpler acoustic scenarios, they still underperform
in cocktail party scenarios [65].

1.5 Neural tracking of the speech signal

While event-related potential studies based on auditory evoked potentials have
given insight into selective auditory attention and auditory scene analysis [66],
they are limited by their usage of simple, repeated stimuli that do not reflect the
complex auditory stimuli that occur in the wild. Therefore, studies using single-
trial, natural, continuous stimuli are preferred. These studies have extensively
shown that several features of a speech stimulus are encoded in the human
auditory cortex. For example, Aiken and Picton [67] have shown for one of the
first times that the auditory cortex tracks the envelope of the presented speech
stimulus (Figure 1.5), especially in the δ- and θ-band [47,68–70] (although, more
recently, this is also shown for the γ-band [70,71]). Moreover, Mesgarani and
Chang [46] have shown that also in a cocktail party scenario with two competing
speakers, a speech spectrogram can be reconstructed from the cortical responses
that reflects the spectro-temporal features of the attended speech signal.

Most studies, however, focus on the speech envelope, which represents the
slowly-varying temporal modulations of the speech signal, as a crucial feature
that is encoded in the neural signals. The speech envelope is one of the
most important cues for speech understanding. Vocoded (synthesized) speech
using only the speech envelope, for example, is still highly intelligible (without
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Figure 1.5: The auditory cortex tracks the envelope of a presented (and attended)
speech signal, which manifests itself, for example, in a phase-locking of the (decoded)
neural signals (for example, recorded EEG signals) with the speech envelope.

background noise) [72]. Ding and Simon [41] showed that in a competing speaker
setup with two concurrent speech streams, the neural signals phase-lock (i.e.,
synchronize) both with the envelope of the attended and unattended speech
signal. The former can, however, be easier decoded than the latter. Moreover,
they demonstrate that when changing the intensity of the competing speakers,
the neural signals only adapt to the intensity changes of the attended speaker
and not of the unattended speaker. Furthermore, Ding and Simon [73], and
Power et al. [73] show that the selective auditory attention mainly modulates
the longer-latency responses around 100-250 ms in the auditory cortex, rather
than the short-latency responses around 50 ms. Consistent with these findings,
Zion Golumbic et al. [47] claim that the neural tracking of both the attended
and unattended speech envelopes is present in the lower-level auditory cortices,
but only of the attended speech envelope in the higher-order regions. As
concluded by Simon [42], concurrent speech signals are individually encoded in
the auditory cortex, even when they are spectrally overlapping and not resolvable
in the auditory periphery. This stronger neural tracking of the attended versus
unattended speech envelope has been exploited for the first time in EEG-based
AAD by O’Sullivan et al. [74], who used the so-called ‘stimulus reconstruction’
(SR) paradigm, and by Horton et al. [75], who generated features by, for example,
directly cross-correlating the speech envelopes with the EEG channels, and
classified them to make a decision about the auditory attention. The SR
paradigm is still a commonly used AAD paradigm (see Chapter 3). Lastly,
the neural tracking of the speech envelope can also be used to, for example,
objectively predict speech intelligibility, which could lead to automatic fitting
of HAs and CIs [76–80].

More recently, neural tracking of other features of the speech signal than the
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1.6 Neural tracking of the attended spatial location

spectrogram or envelope has been proven, for example, based on linguistic
features (e.g., phonetic or semantic features) [81–86] or other acoustic features,
such as the fundamental frequency of the voice [87,88].

1.6 Neural tracking of the attended spatial location

It is known that neural signals are modulated by visual and somatosensory
spatial attention. For example, the EEG/MEG-power in the α-band in the
(parieto-)occipital areas changes depending on the direction of attentional
focus, in visual [89–91] and somatosensory [91, 92] attention. Therefore, it is
hypothesized that similar changes of the neural signals exist depending on the
direction of spatial attention to an auditory stimulus, resulting from selectively
firing neurons.

Such neural changes and tracking of the attended spatial location is confirmed
in several studies. Wolbers et al. [93] showed, based on fMRI recordings, that
auditory motion (in this case, non-speech) is encoded in the occipito-temporal
regions in people with a visual impairment. Also using fMRI, McLaughlin et
al. [94] showed that there is mainly a contralateral (i.e., at the opposite side of the
stimulus location) activation in the auditory cortex. In EEG/MEG recordings, it
has been repeatedly shown that a similar α-band power lateralization is present
to the direction of auditory spatial attention to a single sound source [95–98].
More specifically, this α-power lateralization corresponds to an ipsilateral (i.e.,
at the same side of the stimulus location) enhancement and contralateral
suppression of α-power [95,96,98–100]. Furthermore, this neuronal selectivity to
the spatial auditory direction is mainly found in the auditory cortex [94, 96, 97],
but also in other parieto-occipital regions [98]. Deng et al. [98] hypothesized
that this α-power lateralization in the parieto-occipital regions is the effect of
the same cognitive processing as for other sensory modalities. Lastly, it has
been shown that these α-power lateralization patterns to the spatial location of
the attended sound source are also present in a competing-stimuli scenario with
more than one sound source [99–101].

Using this information, Bednar et al. [102] could decode the position of a non-
moving, static sound source from EEG. This was then extended to the decoding
of the trajectory of a continuously moving sound source in [103], mainly based
on the phase of the δ-band EEG signals in the auditory cortex and the α-band
power in the parieto-occipital areas. Finally, this was extended to continuously
moving competing (speech) stimuli in [104], showing that the attended sound
source trajectory could be decoded from the EEG.
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Denoising and
speaker separation MIX

Auditory Attention
Decoding (AAD)

targeted speaker

EEG

.
.
.

Audio

noise

Figure 1.6: A conceptual overview of a neuro-steered hearing device with two
competing speakers, consisting of a speaker separation block, AAD block, and the
EEG modality [5]. The main focus of this thesis is on the AAD block. This overview
assumes that the auditory attention decoding is performed separately from the speech
enhancement, which is not necessarily the case (see Section 1.7.2).

1.7 The concept of neuro-steered hearing devices

Incorporating AAD in an assistive hearing device such as a HA or CI could lead
to a so-called ‘neuro-steered hearing device’ that can assist the user in a cocktail
party scenario. However, EEG-based AAD could not only be useful in the
context of assistive hearing devices but also in, for example, consumer earphones
and other hearables such as noise-canceling headphones and BCIs [105].

While Figure 1.1 already conceptually conveys the idea of a neuro-steered
hearing device, Figure 1.6 shows a more detailed conceptual overview. The
main ingredients are a speaker separation and enhancement block, an AAD
block determining the targeted speaker based on the EEG, and a mix block
that mixes the outputs of the speaker separation using the information about
the auditory attention to enhance the attended speaker and suppress the other
speakers. In this mixing procedure, other auditory objects and speakers should
not be fully suppressed, as, for example, it needs to be still possible for the
user to switch to another speaker. The main focus of this thesis is on the
development of algorithms for the AAD block.

The following sections describe the different building blocks (AAD algorithms
(Section 1.7.1), speech separation and enhancement (Section 1.7.2), EEG

Section 1.7 is largely based on Section IV of [5].
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1.7 The concept of neuro-steered hearing devices

miniaturization and wearability (Section 1.7.3)) of a neuro-steered hearing
device in the context of AAD, as well as the validation of AAD algorithms in
realistic listening scenarios and on hearing-impaired listeners (Section 1.7.4),
which is crucial for the success of neuro-steered hearing devices.

1.7.1 AAD algorithms

The most important building block of a neuro-steered hearing device is the AAD
algorithm, which extracts information about the attended speaker from the
EEG to inform the hearing device about which speaker to enhance and which
other speaker(s) to suppress5. There exist many different AAD algorithms,
on which we give an extensive review in Chapter 3. A common paradigm for
AAD is the SR algorithm, which capitalizes on the stronger neural tracking
of the attended speaker (Section 1.5) by reconstructing the attended speech
envelope from the EEG using a neural decoder and identifying the attended
speaker through correlating the decoded envelope with the speech envelopes of
the individual speakers.

1.7.2 Speaker separation and enhancement

Several AAD algorithms, for example, those based on the SR paradigm, a priori
require the individual speech signals of the competing speakers. Even for those
AAD algorithms that do not require the individual speech signals for AAD itself,
a speaker separation and enhancement block is eventually required to extract
the attended speech signal for mixing and presentation to the hearing device
user. While several advanced and well-performing signal processing algorithms
exist for speech separation and enhancement [107–109], we here focus on the
combination with AAD.

In the context of the SR algorithm, AAD has been performed using the
unprocessed microphone signals as reference signals. Van Eyndhoven et al. [110]
showed that there is a significantly lower performance without a speech or
envelope separation step. This is confirmed by Aroudi et al. [111], who, however,
also indicated that removing reverberation and other (non-interfering speech)
background noise is less critical than separating the interfering speakers. Both
studies show that an a priori speech or envelope demixing step is crucial.
Therefore, many different speaker separation and enhancement algorithms have
been proposed in combination with the SR algorithm, both based on traditional

5Such a separate AAD and speech enhancement is not strictly necessary, as shown in [106]
(see Section 1.7.2).
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source separation and beamforming methods [110,112–115], and nonlinear deep
neural networks (DNNs) [49,50,106,113,116,117].

Van Eyndhoven et al. [110] proposed a first approach based on the multiplicative
non-negative ICA (M-NICA) and MWF algorithm. M-NICA is used to demix
the speech envelopes (exploiting the non-negativity of an envelope), which
are then used to perform AAD. Using voice activity detection (VAD) on the
identified attended speech signal by the AAD algorithm, an MWF is trained
to perform the final speech enhancement step. The authors showed that this
works well with substantial noise levels, is applicable in real-time, and requires
only a low amount of computational resources, which is a crucial feature for
practical hearing devices. Furthermore, Aroudi and Doclo [112] proposed to
use a linearly constrained minimum variance (LCMV) beamformer to generate
the reference signals. The output of the AAD algorithm is then used to steer
another binaural LCMV beamformer to filter out the attended speaker. This
approach again resulted in a significant improvement in speech quality, even
with substantial noise levels.

Following the trend of DNNs in speech separation, O’Sullivan et al. [49] proposed
to use a single-microphone long short-term memory (LSTM) DNN-based speech
separation method to extract the different individual speech signals from a
mixture. While this approach showed a significant improvement in speech
quality (however, without background noise), it is limited to a closed set of
fixed speakers. Han et al. [50] alleviated this limitation using an online deep
attractor network, allowing generalization to new target speakers. Das et
al. [113] proposed a similar system as in [110] using deep clustering. They found
the best performance in challenging acoustic scenarios using a deep clustering-
based speech separation for voice activity detection to inform an MWF for
the speech demixing for AAD and the final speech enhancement step. Finally,
Borgström et al. [116] proposed a convolutional neural network (CNN) similar
to [109].

All previous approaches tackle the speaker separation and AAD step as separate
problems, where the former needs to inform the latter. Another original
approach, however, is to use the reconstructed speech envelope from the EEG to
directly inform the speaker separation and enhancement, performing an all-in-
one AAD and speaker enhancement operation. Ceolini et al. [117] employed this
strategy using a CNN-based speech separation algorithm. Hosseini et al. [106]
went one step further by directly feeding the EEG jointly with the speech
mixture in a DNN for end-to-end brain-informed speech enhancement. Lastly,
Pu et al. [114,115] optimized a beamformer such that the beamformer output
signal is maximally correlated with the neural decoder output.
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1.7 The concept of neuro-steered hearing devices

1.7.3 EEG miniaturization and wearability effects

Most AAD data are recorded using heavy, bulky, and wet (i.e., gel-based) EEG
recording systems. A practical neuro-steered hearing device, however, would
require wearable, concealable EEG recording systems with (potentially dry)
miniaturized EEG sensors, such as in-ear [28,29] or around-the-ear [30] systems
(see Section 1.3.2). These EEG systems only provide a limited amount of EEG
channels, recording brain activity within a small area. It is, therefore, crucial
to investigate the impact of these wearable, miniaturized EEG systems on the
AAD performance. This can be done in a recording system-based (i.e., starting
from an existing recording system or setup) or data-driven (i.e., finding an
optimal, reduced set of electrodes or channels for AAD from a high-density
EEG system) manner. The following studies all used the SR paradigm.

The recording system-based approach was taken by Mirkovic et al. [118], who
showed that, although a significant decrease in AAD performance is obtained
using an around-the-ear cEEGrid system [30] w.r.t a full-cap 64-channel system,
still acceptable performances using cEEGrid are achievable. However, similar
AAD performances to a full-cap 64-channel system could be obtained using
a wearable 24-channel SMARTING system [3] and wearable, dry 18-channel
DSI-24 system [119].

Using a data-driven channel reduction approach, a reduction from 96 to 25
EEG channels could be realized by Mirkovic et al. [120] without a loss in
AAD performance. They even achieved still acceptable performances with less
than ten EEG channels. Mundanad Narayanan and Bertrand [121] found a
similar result, reducing the number of channels from 64 to ten without a loss in
performance. Moreover, Mundanad Narayanan et al. [121,122] demonstrated
that similar AAD performances to the standard long-distance montages could
be obtained with EEG measured with multiple optimally positioned electrode
pairs with inter-electrode distances down to 3 cm. This is an important result
for EEG miniaturization, where per EEG sensor, only a few electrodes within a
confined area on the scalp are available. Lastly, all three studies reported that
the selected electrodes using data-driven selection methods for SR are positioned
above the temporal lobe, where the auditory cortex is located. This is consistent
with the observation that the neural tracking of the speech envelope(s) is mainly
present in the auditory cortex (Section 1.5).

19



1 Introduction

1.7.4 Validation in realistic listening scenarios and on hearing-
impaired listeners

AAD algorithms are often validated in very controlled scenarios, e.g., only using
two competing speakers, without background noise and reverberation, using
spatially well-separated speakers, or without switches in attention. Validating
the performance of AAD algorithms in more realistic listening scenarios is,
of course, paramount for the practical application of neuro-steered hearing
devices in the wild. A few studies have performed AAD in more challenging
scenarios. For example, Schäfer et al. [123] showed that the SR algorithm
still worked with only a limited performance loss when using four competing
speakers. Furthermore, Das et al. [4] showed for the SR algorithm that the AAD
performance even improves with moderate background babble noise compared
to a scenario without noise. It is hypothesized that this results from enhanced
neural tracking due to the more challenging situation, requiring a higher effort
by the listener. As expected, the AAD performance starts to degrade for further
increasing noise levels. The authors also showed that the AAD performance
improves with an increased speaker separation, as expected from spatial release
from masking, while acceptable performance is obtained even with closely
positioned competing speakers. On top of that, Fuglsang et al. [2] and Aroudi et
al. [111] tested different reverberation settings, and Aroudi et al. [111] established
that the SR algorithm could be trained on data recorded in different acoustic
scenarios than the test scenario. Straetmans et al. [124] also showed that AAD
is still possible in a natural environment, during free leisure walking.

Furthermore, some initial analyses on the effects of switches in auditory attention
on the performance of AAD algorithms (for example, on the detection delay)
have been performed [44, 49, 125–127]. Lastly, it has been extensively shown
that the neural tracking of the attended envelope is not only present in normal-
hearing people but also in hearing-impaired listeners [80, 128, 129], and that
the SR algorithm still works with CIs and HAs [130, 131]. This is, of course,
paramount for the successful employment of (SR-based) AAD in practical
neuro-steered hearing devices.

1.8 AAD datasets

In this section, we give an overview of the AAD datasets that are used
throughout this thesis. All datasets were available before the start of this
PhD project, and no extra data collection was performed in the context of this
thesis. Table 1.3 gives a summary of the most important characteristics of these
datasets. In all datasets, an AAD experiment using natural, continuous speech
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1.8 AAD datasets

stimuli is performed, where the subjects are asked to attend to one out of two
simultaneously talking speakers. During the experiment, the EEG data of the
participants are recorded.

1.8.1 Dataset A - Biesmans et al. (2017) [1]

Dataset A is recorded with the aim to compare different envelope extraction
methods for the SR algorithm and to analyze the effect of head-related filtering
and the ear-specific decoding bias on AAD, and is extensively described in [1,134].
This dataset is freely available online [132] and has been used in several AAD-
related studies (e.g., [1, 110, 121, 134–140]). 16 normal-hearing and natively
Dutch-speaking subjects (eight male, eight female gender) participated in an
AAD experiment, listening to one out of two competing speakers. The speech
stimuli consisted of four Dutch short stories narrated by male speakers. These
short stories were divided into two simultaneous tracks, consisting of four parts
of approximately 6 min. After each presented part, the participants needed to
answer a few multiple-choice questions, and after all four parts, there was an
extended break. After the break, the participants switched attention to the
other track. This resulted already in 48 min of AAD data. In the last part of
the experiment, three extra repetitions of the first two minutes of each part,
with attention only to the first track, were presented. This resulted in another
24 min of data. This brings the total amount of EEG and audio data per subject
to 72 min.

The EEG data of the participants were recorded using a 64-channel BioSemi
ActiveTwo system (Figure 1.3). Half of the time, the speech stimuli were
presented dichotically (i.e., ‘dry’, presenting each speaker to a different ear), the
other half they were processed using head-related transfer functions (HRTFs) in
an anechoic room (i.e., without reverberation), simulating a realistic listening
scenario with both competing speakers located at ±90◦ left and right of the
listener. In the HRTF-filtered conditions, the subjects thus perceived both
stimuli in each ear. The attention was, furthermore, balanced to each ear (i.e.,
half of the data are left attended, half right attended). No other background
noise was added to the mix of speech stimuli.

1.8.2 Dataset B - Fuglsang et al. (2017) [2]

Dataset B is recorded with the aim to assess AAD performance in more complex
acoustic scenarios, in this case, with different amounts of reverberation. It
is extensively described in [2], has been used in, e.g., [2, 138–142], and is
freely available online [133]. 18 normal-hearing subjects participated in an
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1.8 AAD datasets

AAD experiment. The speech stimuli consisted of fictional stories narrated
by a competing male and female Danish speaker. The competing stories were
presented in 50 s trials, with multiple-choice questions after each trial. After
ten trials, there was an extended break. In total, there are 60 min of EEG and
audio data per subject.

Similar to Dataset A, the EEG data of the participants were recorded using a 64-
channel BioSemi ActiveTwo system. The competing speech stimuli were HRTF-
filtered, simulating both speakers on ±60◦ azimuth direction. Three different
acoustic room settings were simulated: an anechoic room, a classroom with mild
reverberation, and the Hagia Irene church with high reverberation. Both the
attended speaker (male/female) and acoustic room setting (anechoic/mild/high
reverberation) were balanced. During the AAD experiment, the participants
were asked to fixate on a crosshair.

1.8.3 Dataset C - Zink et al. (2017) [3]

Dataset C is recorded with the aim to assess AAD performance in a longitudinal,
multiple-day recording with neurofeedback. It is extensively described in [3].
The data of two normal-hearing subjects are recorded in a longitudinal AAD
experiment that is performed across multiple recording days. Data is recorded
in eight different sessions of 24 min on seven different days. On the first day,
there are two sessions, with around seven days of rest afterwards. Then data are
recorded in four sessions on four consecutive recording days, followed by three
days of rest. After another recording day/session, seven days of rest followed
before the last recording session. Each session consisted of an AAD experiment
with two competing Dutch-speaking male speakers narrating a fairytale story,
and was split into four blocks of six minutes. After each 6 min-trial, multiple-
choice questions were asked.

As opposed to the other datasets, the EEG data are not recorded in a laboratory
setting but comfortably seated at the subject’s home. A 24-channel mobile
SMARTING EEG system of mBrainTrain was used. The speech stimuli were
again HRTF-filtered to simulate a realistic listening scenario. During the four
sessions on the four consecutive recording days, one subject received real-time
feedback about the AAD performance to probe neurofeedback effects.

1.8.4 Dataset D - Das et al. (2018) [4]

Dataset D is again recorded with the aim to assess AAD performance in more
complex acoustic scenarios, in this case, with different amounts of background
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babble noise and different competing speaker locations. It is extensively
described in [4] and has already been used in, e.g., [4, 113]. 18 normal-hearing
and natively Dutch-speaking subjects participated in an AAD experiment,
listening to two competing short stories narrated by two male speakers. Each
trial had a different duration between 2 and 5 min. Multiple-choice questions
were asked after each trial. A 64-channel BioSemi ActiveTwo system was used
to record the EEG data.

Four different angular competing speaker positions were used (±90◦,±5◦,−90/−
30◦,+30/+90◦ along the azimuth direction), while also background babble noise
at different SNRs (no noise, −1.1,−4.1,−7.1 dB) were added to the competing
speech streams. The babble noise consisted of four unique speech streams
(two male, two female), HRTF-filtered and mixed at nine equidistant locations
around the listener. A screen was shown to the participant with the experiment
layout, indicating the required direction of attention.

1.9 Research objectives and overview

1.9.1 Research objectives

The general aim of this thesis is to develop novel signal processing algorithms for
EEG-based AAD. It focuses, therefore, on the AAD block of Figure 1.6, however,
while taking the other aspects of a neuro-steered hearing device described in
Section 1.7 into account.

Before developing new AAD algorithms, it is crucial to identify the gaps in
the current AAD literature that need to be addressed. Therefore, the first aim
(Part I) of this thesis is to provide a comparative study on different existing
AAD algorithms (Chapter 3). To be able to easily compare different AAD
algorithms, we first design a new performance metric for AAD algorithms, taking
the context of neuro-steered gain control into account (Chapter 2). Moreover,
this new metric should allow resolving the speed-accuracy trade-off that occurs
in AAD algorithms. Such a speed-accuracy trade-off is found in many different
BCI applications [36].

From the comparative review study, several signal processing-related challenges
for AAD are identified (related to the building blocks of a neuro-steered hearing
device (Section 1.7)). In the remaining of the thesis, we focus on two of these
challenges in Parts II and III, respectively:
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1. Time-adaptive, unsupervised AAD algorithms (Part II): Most
AAD algorithms require a per-user controlled experiment for training
(i.e., they are supervised and thus require labeled training data) and use
neural decoders that are fixed in time. Therefore, in this thesis, we aim
to develop a novel unsupervised, time-adaptive AAD algorithm based
on the SR method (Chapters 4 and 5). Such an algorithm would allow
to automatically (i.e., without external intervention) adapt to changing
conditions and situations, and other non-stationarities in the data.

2. Fast and accurate AAD algorithms (Part III): Most AAD
algorithms - especially the SR-based ones - suffer from a speed-accuracy
trade-off, i.e., when operating at higher speeds (shorter decision times to
make a decision about the auditory attention), their accuracy drastically
decreases (see Part I). To cope with this trade-off, we aim to develop
a set of novel AAD algorithms that exploit a new paradigm: decoding
the spatial focus of auditory attention from the EEG. In order to do so,
we use the common spatial pattern (CSP) algorithm (Chapter 6) and a
Riemannian geometry-based classification (RGC) algorithm (Chapter 7).

1.9.2 Chapter overview

This thesis is split into three main parts, each containing two chapters, as can
be seen in the overview in Figure 1.7. The first part comprises the evaluation
and comparison of different AAD algorithms (Part I). The performance metric
designed in Chapter 2 to evaluate AAD algorithms is used in the comparative
study but also in the other parts. Two signal processing-related knowledge gaps
identified in the comparative study in Chapter 3 are addressed in the subsequent
parts. In Part II, we develop an unsupervised time-adaptive AAD algorithm
based on the SR method, while in Part III, the new paradigm of decoding the
spatial focus of auditory attention is exploited using a CSP- and RGC-based
method. As such, Parts II and III each focus on a different AAD paradigm:
SR-based AAD (Part II) and spatial focus-based AAD (Part III). The last part
describes the conclusions and future research directions (Part IV).

Each chapter is largely based (with minor adaptations) on a published/accepted
and peer-reviewed paper. All papers are first-authored by myself, in close
collaboration with both supervisors. Chapter 3 is the result of an international
collaboration with various leading authors in the field of AAD. A more detailed
overview of the different chapters can be found below.
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1 Introduction

Figure 1.7: An overview of the different chapters in this thesis and their relations.
The comparative review study of AAD algorithms allowed us to identify the most
important signal processing-related challenges in AAD, two of which are addressed
in the two subsequent parts. The performance metric designed in Chapter 2 is used
throughout the thesis.

Part I: Evaluation and comparison of AAD algorithms

Chapter 2 describes the design of a novel, interpretable performance metric for
AAD algorithms, which resolves the trade-off between accuracy and decision time
(speed), allows for easy (statistical) comparison of different AAD algorithms,
and returns as a by-product an optimized gain control system for a neuro-steered
hearing device. This performance metric is an essential tool for the comparative
study in Chapter 3 and is further used throughout the thesis.

Chapter 3 provides a comparative review study of different AAD algorithms.
First, we provide a broad review of different AAD algorithms, which are then
compared to each other using the performance metric of Chapter 2. The results
show that linear SR methods are robust but too slow for practical purposes.
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Decoding the spatial focus of auditory attention, which is further pursued in
Part III, shows to be more promising. DNN-based algorithms turn out to
be hard to replicate. From this review study, we also extract a few signal
processing-related challenges for AAD, of which unsupervised, time-adaptive
AAD is addressed in Part II.

Part II: Unsupervised AAD

Chapter 4 describes a novel unsupervised (i.e., without information on which
speaker is attended or unattended) self-adapting training procedure for a subject-
specific stimulus decoder, in which the decoder iteratively improves itself based
on its own predicted labels. We show that the resulting decoder performs better
than a supervised subject-independent decoder. Furthermore, we also provide a
mathematical analysis that explains why this unsupervised training procedure
works even when starting from a random initial decoder.

Chapter 5 extends the unsupervised stimulus decoder, which is trained in
batch and fixed in time, to an online time-adaptive unsupervised SR method
that continuously and automatically adapts over time to non-stationarities in
the EEG. We propose both a sliding window and recursive implementation,
and show that the proposed time-adaptive unsupervised decoder outperforms a
time-invariant supervised decoder.

Part III: Decoding the spatial focus of auditory attention

Chapter 6 explores an alternative AAD paradigm to improve the performance
on short decision windows: decoding the spatial focus of auditory attention
using a filterbank CSP-based (FB-CSP) classification method. We show that
the FB-CSP method outperforms the SR method, and performs at least on par
with a similar CNN-based method. Furthermore, we show that the method
still works using EEG channels only around the ear and that it can adapt to
unlabeled data from an unseen subject.

Chapter 7 extends the CSP method to an RGC method. The covariance
matrix of an EEG window is directly classified into a direction of auditory
attention while taking its Riemannian structure into account. We show that this
RGC method outperforms the CSP method both for a binary and multiclass
classification problem.
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Part IV: Conclusion

Chapter 8 summarizes the main findings of the thesis in relation to the research
objectives in Section 1.9.1, and provides several suggestions for future research,
building upon the work presented in this thesis.

Appendices

Appendix A contains an article for the general public about the thesis topic,
originally written for the Flemish science magazine EOS (in Dutch), and the
Leuven.AI-stories blog and BioVox newsletter (English).
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Part I

Evaluation and comparison of
AAD algorithms
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2 | An interpretable performance
metric for AAD algorithms in a
context of neuro-steered gain
control

This chapter is based on S. Geirnaert, T. Francart, and A. Bertrand,
"An Interpretable Performance Metric for Auditory Attention Decoding
Algorithms in a Context of Neuro-Steered Gain Control," IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol.
28, no. 1, pp. 307-317, 2020. Two figures (Figures 2.4 and 2.5) and a
table (Table 2.2) have been added.

ABSTRACT | While numerous AAD algorithms have appeared in the literature
(see Chapter 3), their performance is generally evaluated in a non-uniform
manner. Furthermore, AAD algorithms typically introduce a trade-off between
the AAD accuracy and the time needed to make an AAD decision, which
hampers objective benchmarking as it remains unclear which point in each
algorithm’s trade-off space is optimal in a context of neuro-steered gain control.
To this end, we present in this chapter an interpretable performance metric to
evaluate AAD algorithms based on an adaptive gain control system steered by
AAD decisions. Such a system can be modeled as a Markov chain, from which
the minimal expected switch duration (MESD) can be calculated and interpreted
as the expected time required to switch the operation of the hearing device after
an attention switch of the user, thereby resolving the trade-off between accuracy
and decision time. Furthermore, we show that the MESD calculation provides
an automatic and theoretically founded procedure to optimize the number of
gain levels and decision time in an AAD-based adaptive gain control system.
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2 An interpretable performance metric for AAD algorithms

2.1 Introduction

While several different AAD algorithms have been proposed in the literature (see
Chapter 3 for an overview), an important question is how these AAD algorithms
should be evaluated, especially in the context of neuro-steered hearing devices.
Their accuracy, measured as the percentage of decision windows in which the
attention was decoded correctly, depends on the length of the decision window,
which defines how much EEG data are available to make a decision. Because
of the low SNR of the neural response to the speech signals in the EEG, the
accuracy of traditional (SR-based) AAD algorithms increases with the length
of the decision window. However, a longer decision window implies that the
algorithm also needs more time to, for example, react on a switch in attention,
resulting in a trade-off. This trade-off between accuracy and decision window
length leads to three fundamental issues regarding the evaluation of AAD
algorithms:

1. The dependence of the accuracy on the decision window length hinders
easy statistical comparison, as the different decision window lengths need
to be taken into account as an extra factor. This hampers drawing
adequate statistical conclusions.

2. Algorithm A might perform better than algorithm B for shorter decision
window lengths, while algorithm B might perform better than algorithm
A for long decision window lengths, leading to inconclusiveness when
benchmarking both algorithms.

3. In several scientific reports, only one decision window length with the
corresponding accuracy is reported. A different choice of the decision
window lengths (for example, across two scientific reports) then obstructs
a fair comparison.

The aforementioned problems motivate the need for a single-number metric to
capture the overall AAD performance, which also takes the trade-off between
accuracy and decision time into account by selecting the optimal point on the
trade-off curve that is most relevant in the context of adaptive gain control for
neuro-steered hearing devices.

de Taillez et al. [143] adopted the Wolpaw information transfer rate (ITRW)
[bit

s ] from the BCI community to combine the accuracy and the decision window
length in a single metric as follows [144]:

ITRW = 1
τ

(
log2M + p log2 p+ (1− p) log2

1− p
M − 1

)
, (2.1)
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with p the accuracy (probability of a correct decision), τ the decision time
(here: decision window length), and M the number of classes (here: speakers).
Similarly, Wong et al. [142] used the Nykopp ITR (ITRN) to evaluate AAD
algorithms, which assumes an adaptive BCI setting in which not every time
a decision has to be made [142]. The ITRW was originally defined to
quantify the performance of BCI systems that are used to re-establish or
enhance communication and control for paralyzed individuals with severe motor
impairments [144]. It quantifies the number of bits that can be transferred per
time unit and matches, as such, the specific context of communicating through
brain waves. However, the ITRW/N has no such clear interpretation in the
context of AAD for neuro-steered hearing devices and is, therefore, not per se a
relevant criterion to compare AAD algorithms. Instead, we are interested in
how fast a hearing device can switch its operation from one speaker to another,
following an intentional attention switch of the user, based on consecutive AAD
decisions and taking into account that some decisions may be incorrect.

The lack of an interpretable metric in the context of neuro-steered hearing
devices, which combines both decision time and accuracy in a single metric,
and which facilitates making unambiguous conclusions on performance and
easy comparisons between algorithms, motivates the design of a new metric,
which we refer to as the minimal expected switch duration (MESD)1. The MESD
metric is based on the performance of an adaptive gain control system that is
optimized for the AAD algorithm under test. Therefore, the derivation of the
MESD metric also leads to an automatic and theoretically founded procedure
to optimize the step size and decision frequency in an AAD-based adaptive gain
control system, thereby avoiding tedious manual tuning.

In Section 2.2, we develop this new metric step-by-step, leading to a closed-form
expression based on which the metric can be computed. In Section 2.3, we give
examples of the MESD metric on real EEG/audio data, as well as a comparison
with the ITRW/N metric. Conclusions are drawn in Section 2.4.

2.2 Expected switch duration

2.2.1 An adaptive gain control system

Given that AAD algorithms decode the attention of a hearing device user,
hearing devices could benefit from an adaptive gain/volume control system.
Given a two-speaker situation, such a system would allow to adaptively over

1We provide an open-source implementation to compute the MESD metric, which can be
found online on https://github.com/exporl/mesd-toolbox [145].
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2 An interpretable performance metric for AAD algorithms

time change the gain of speaker one versus speaker two, tracking the attention of
the hearing devices user (Figure 2.1). We, however, want to avoid the usage of
only two volume settings or gain control ‘states’, i.e., all-or-nothing amplification
of both speakers, as this would cause perceptually unpleasant spurious and
sudden switching of speakers (of which many by mistake). Moreover, we want
to enable the user to adequately react when the system starts switching towards
the wrong speaker due to AAD errors, before the attended speaker becomes
unintelligible. As a result, the system should have many states to gradually
and adaptively change the relative gain between both speakers.

However, this results in two crucial design parameters which both affect the
performance of the system, each leading to a fundamental trade-off, which is
illustrated in Figure 2.1:

1. How many gain levels should we use? As Figure 2.1a illustrates,
using fewer gain levels results in a faster gain switch after an attention
switch but also results in a less stable gain process, negatively affecting
the comfort of the user. Increasing the number of gains stabilizes the gain
process and thus results in a more robust gain control but increases the
gain switch time.

2. How often should we take a step? A short decision window length
corresponds to a fast gain control system - as less EEG and audio data
need to be buffered before a decision can be made - and thus a fast gain
switch (Figure 2.1b). However, as is indicated in Section 2.1, a shorter
decision window length also corresponds to a lower accuracy, resulting in
a more unstable gain process - vice versa for a longer decision window
length.

Note that optimizing a discrete gain level system does not imply that there
needs to be a discrete implementation in a hearing device. One could also
continuously interpolate between the discrete gain levels to provide a more
pleasant user experience. In that case, optimizing the rate of change of the
volume (for example, the slope) corresponds to optimizing the number of gain
levels.

In the following sections, we translate this adaptive gain control system into
mathematics using a Markov chain model. This mathematical formulation will
allow us to rigorously address these fundamental issues and optimize these
two design parameters, as well as provide a way to properly evaluate and rank
different AAD algorithms through the novel MESD metric, which is derived
from the optimal gain control design for the AAD algorithm under test. This
MESD metric is formally defined in Section 2.2.5.
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1 2 3 . . . i . . . N − 1 N
p

q

p

q

p

q

q p

x = 0 x = i−1
N−1

x = 1

Attended
speaker max.

Interference
max. Target direction

Figure 2.2: An adaptive gain control system can be modeled as a Markov chain
with N states (gains) and a transition probability p in the target direction (attended
speaker) equal to the accuracy of the AAD algorithm.

Adaptive gain control parameter Markov chain parameter
gains states x ∈ [0, 1]
number of (relative) gain levels number of states N
AAD accuracy transition probability p
decision window length step time τ

Table 2.1: The different concepts of an adaptive gain control system have a
straightforward translation to a Markov chain parameter.

2.2.2 Markov chain model

The adaptive gain control system of Section 2.2.1 can be straightforwardly
translated into a mathematical model using a Markov chain (Figure 2.2).
Table 2.1 shows how the parameters of the Markov chain embody several
concepts of the adaptive gain control system. The different mathematical
notations related to the Markov chain that are used and explained in the
following sections are summarized in Table 2.2.

The Markov chain contains N states, each corresponding to a relative gain
level x ∈ [0, 1] of the attended speaker versus background noise, including the
interfering speaker(s). Each state corresponds to one single gain level, such that
a simple Markov model suffices and a hidden Markov model is not required. For
illustrative purposes throughout the manuscript, but without loss of generality,
we will consider the example of a noiseless two-speaker scenario. In this case,
x = 1 would correspond to a target relative amplification of the attended speaker
versus the unattended speaker, which is typically constrained to still enabling
the listener to switch attention to the other speaker. x = 0 then corresponds to
the maximal suppression of the attended speaker with a similar constraint, while
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2.2 Expected switch duration

Mathematical notation Meaning
x ∈ [0, 1] gain level
N ≥ 2 number of states
i ∈ {1, . . . , N} state index
p ∈ [0, 1], q = 1− p, r = p

q transition probability (and related quantities)
τ > 0 step time
π(i) ∈ [0, 1] steady-state distribution
P0 ∈ [0, 1] confidence level
k̄ ∈ {1, . . . , N} lower bound (state index) of the P0-confidence interval
x̄ ∈ [0, 1] lower bound (gain level) of the P0-confidence interval
c ∈ [0, 1] predefined comfort level
kc ∈ {1, . . . , N} smallest state corresponding to gain x ≥ c
hj(i) ≥ 0 mean hitting time from state i to j

Table 2.2: A summary of the different mathematical notations related to the Markov
chain.

x = 0.5 implies equal gain for both speakers. These gain levels are assumed to
be uniformly distributed over [0, 1], resulting in a one-to-one relation between
state i and gain level x:

x = i− 1
N − 1 .

Given that x = 1 corresponds to the target gain level of the attended speaker, the
transition probability p ∈ [0, 1] in the target direction is equal to the probability
of a correct AAD decision, i.e., the AAD accuracy. Similarly, q = 1 − p
corresponds to the probability of a wrong decision. In what follows, we assume
that p > 0.5, i.e., the evaluated AAD algorithm performs at least better than
chance level. A correct (step towards x = 1) or incorrect (step towards x = 0)
decision always results in a transition to a neighboring state, except in state 1 or
state N , where no state transition is made after an incorrect or correct decision,
respectively (for example, in state N , the gain is maximal for the attended
speaker, which is the best the system can obtain). The latter is indicated by
the self-loops in Figure 2.2, which models the gain clipping in Figure 2.1.

Each step takes τ seconds - the decision window length -, as τ seconds of EEG
and audio data need to be buffered before a new decision can be made. The
application of an AAD algorithm on consecutive windows of τ seconds, which
results in a gain process such as shown in Figure 2.1, thus corresponds to a
random walk process through the Markov chain. Note that the AAD accuracy
p directly depends on this decision window length τ , as denoted before. The
p(τ)-performance curve relates this AAD accuracy p with the decision window
length τ for a particular AAD algorithm (see Figure 2.6 for an example).
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2 An interpretable performance metric for AAD algorithms

The two fundamental issues regarding the gain control system as listed in
Section 2.2.1 can now be translated into the optimization of the Markov chain
parameters:

1. Optimizing the number of gain levels corresponds to the optimization of
the number of states N (this will be derived in Section 2.2.3).

2. Determining the time resolution with which the gain should be adapted
corresponds to determining the step time τ (this will be derived in
Section 2.2.4). Note that equivalently, the transition probability p can be
optimized. Addressing this second issue corresponds to jointly optimizing
the AAD accuracy p and decision window length τ , as they are directly
related through the p(τ)-performance curve. The resulting pair (τopt, popt)
is called the optimal working point on the p(τ)-performance curve.

We will answer both of these questions through a mathematical analysis on the
corresponding Markov chain in Sections 2.2.3 and 2.2.4, respectively, which will
lead to the MESD metric in Section 2.2.5. However, it should be emphasized
that this Markov chain is a simplified model of a real gain control system, and,
as always, this mathematical tractability comes at the cost of making some
simplifying assumptions. Indeed, a Markov chain assumes independence of the
consecutive decisions2, which may be violated in a practical AAD algorithm, in
particular when there is overlap in the data of consecutive windows.

2.2.3 Optimizing the number of states N

We first optimize the number of states N , where we mainly target a stable
gain process, tackling one of the trade-offs in Figure 2.1a (a stable gain process
versus fast switching).

Steady-state distribution

The steady-state distribution of the Markov chain in Figure 2.2 is needed in
order to analyze the behavior of the modeled adaptive gain control system. This
steady-state distribution π(i) = P (x = i−1

N−1 ), i ∈ {1, . . . , N} is defined as the
probability to be in state i after an infinite number of random steps (starting
from any position), for a fixed transition probability p. Defining r = p

q , the
2It is noted that the ITR metric uses a similar assumption, as it implicitly assumes

independence between consecutive messages (i.e., AAD decisions).
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2.2 Expected switch duration

steady-state distribution is shown in Appendix 2.A to be equal to:

π(i) = r − 1
rN − 1r

i−1,∀ i ∈ {1, . . . , N}. (2.2)

P0-confidence interval

Based on the Markov chain model and the steady-state distribution, we
determine a desirable operating region of the neuro-steered hearing device
via the P0-confidence interval [x̄, 1]. This is the smallest interval in which the
system must operate for at least P0 percent of the time, despite the presence of
AAD errors, while being in a steady-state regime. For example, if P0 = 0.8, we
expect the hearing device to operate in the operating region x ∈ [x̄, 1] for at
least 80% of the time. This implies that we search for the largest k̄ for which:

N∑

j=k̄

π(j) ≥ P0. (2.3)

This leads to the following lower bound k̄ of the P0-confidence interval (the
derivation is given in Appendix 2.B):

k̄ =
⌊

log
(
rN (1− P0) + P0

)

log(r) + 1
⌋
, (2.4)

with b·c the flooring operation yielding an integer output. The resulting P0-
confidence interval is thus defined as3:

[x̄, 1] =
[
k̄ − 1
N − 1 , 1

]
. (2.5)

The P0-confidence interval is indicated in orange in Figure 2.3.

Design constraints

From Figure 2.1, it can be intuitively seen that to minimize the gain switch
duration, we have to minimize the number of states N . However, we also
know that this conflicts with the stability of the gain process (Figure 2.1).
To guarantee a certain amount of stability or confidence of the system and
comfort to the user, we propose the following design criteria for the Markov
chain regarding N :

3Due to the discretization of x, the probability of being in [x̄, 1] is generally larger than
P0. However, (2.4) ensures that [x̄, 1] is the smallest possible interval such that x ∈ [x̄, 1] for
at least P0 percent of the time.
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1 2 . . . N − 4 N − 3 N − 2 N − 1 N
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Figure 2.3: The P0-confidence interval in orange is the smallest set of states for
which the sum of the steady-state probabilities (bars) is larger than P0. The second
design constraint forces the lower bound k̄ of this P0-confidence interval to be above a
predefined level c, assuring stability of the system.

• The lower bound of the P0-confidence interval x̄ should be larger than
a pre-defined ‘comfort level’ c that defines the target operating region,
i.e., x̄ ≥ c. This comfort level c can be determined from hearing tests, for
example, by interpreting it physiologically as the gain level below which it
becomes uncomfortable to listen to the attended speaker (see Section 2.3.1,
where we will motivate to choose c = 0.65). By controlling N , we can
thus ensure that the hearing device is in P0 percent of the time above this
comfort level c, ergo, stabilizing the gain process. With (2.4) and (2.5),
the above requirement results in the following inequality:

x̄ = k̄ − 1
N − 1 ≥ c, (2.6)

which should be viewed as a constraint when minimizing N (note that
k̄ also depends on N). A key message here is that a lower accuracy
p requires more states N in order to guarantee (2.6), as illustrated in
Figure 2.4.

• N ≥ Nmin: a minimal number of states is desired to obtain a sufficiently
smooth transition in the gain adaptation. In particular, we want to avoid
the immediate crossing of the mid-level x = 0.5 (i.e., an immediate change
of the loudest speaker) when leaving the P0-confidence interval due to an
incorrect AAD decision. In cases where (2.6) is satisfied for N = 4, the
P0-confidence interval also often4 contains state 3, which would result in

4This holds unless p > P0, in which case the P0-confidence interval collapses to a single
state N = 4.
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2.2 Expected switch duration

an immediate crossing of x = 0.5 when leaving the P0-confidence interval
due to an AAD error. Therefore, we propose to fix Nmin = 5.

In practice, the minimal number of states N can be found by going over the
candidate values N = Nmin + i, with i = 0, 1, 2, . . . , in this specific order (as
the gain switch duration increases with N), until a value N is found that
satisfies (2.6). As shown in Appendix 2.C, such a value of N can always be
found, for any value of c and P0, assuming that p > 0.5.

2.2.4 Finding the optimal working point (τopt, popt)

In Section 2.2.3, we have constrained N such that the gain process has a
minimum of stability. Therefore, we can now focus on minimizing the gain
switch time. In this section, we rigorously define the expected switch duration
(ESD), which quantifies this gain switch time, and use it as a criterion to
determine the optimal working point (τopt, popt).

Mean hitting time

A fundamental metric within the Markov chain is the mean hitting time (MHT),
which quantifies the expected number of steps s needed to arrive in target state
j when starting from a given initial state i. The MHT is defined as:

hj(i) , E{s|i→j} ,
+∞∑

s=0
sP (s|i→j), (2.7)

with i, j ∈ {1, . . . , N}, E{·} denoting the expectation operator and where
P (s|i→ j) is the probability that target state j is reached for the first time
after s random steps, when starting in state i. Note that we are only interested
in the MHT for the case where i ≤ j, i.e., when going from left to right in the
Markov chain (Figure 2.2). This corresponds to the case where the hearing
device switches from one speaker to the other. In Appendix 2.D, we show that
the MHT can be computed as:

hj(i) = j − i
2p− 1 + p(r−j − r−i)

(2p− 1)2 ,∀ i ≤ j. (2.8)

Expected switch duration

We define a gain switch as the transition to the comfort level c, starting from
any initial state i with a corresponding gain level outside the predefined working
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Figure 2.4: The number of states N needs to adapted such that the lower bound of
the P0-confidence interval is larger than the pre-defined comfort level. In (a), N = 10
states is enough to ensure that the design constraint is obeyed, given an AAD accuracy
of p = 74%. In (b), the accuracy decreases to p = 56%, such that the lower bound of
the P0-confidence interval lies not anymore above the comfort level given the fixed
number of states N = 10. Therefore, as shown in (c), we need to increase the number
of levels N to N = 19 to make sure that the design constraint is obeyed again.
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Figure 2.5: A gain switch is defined as the transition from any initial state outside
the predefined working region [c, 1] to kc, the first state corresponding to a relative
gain x ≥ c. To compute the ESD, for each of the potential initial states, the MHT is
weighted with the probability π(N−i+1)

C
to be in that state (given you are outside the

working region) right before the switch (with C =
kc−1∑
l=1

π(N − l + 1)).

region [c, 1], as visualized in Figure 2.5. This specific definition of a gain switch
implies that we are aiming at quantifying the duration of a stable switch. The
perceived gain switch towards the attended speaker by the hearing device user
would typically occur earlier, for example, when x = 0.5 is reached. The
corresponding gain switch time is called the expected switch duration (ESD) [s].
The ESD thus quantifies the time needed to change the operation of the system
when the user shifts its attention and when the system is not yet in the desired
operating region.

Assuming kc is the first state corresponding to a relative gain x ≥ c:

kc = dc(N − 1) + 1e,

the ESD is formally defined as the expected time (step time τ times expected
number of steps s) necessary to go from any state i < kc to target state kc:

ESD , τE{s|i→kc,∀ i < kc} , τ

+∞∑

s=0
sP (s|i→kc,∀ i < kc),

with P (s|i → kc,∀ i < kc) the probability that target state kc is reached
for the first time after s steps, when starting from any state i < kc. Using
marginalization in the initial state i, this can be written as:

ESD = τ

+∞∑

s=0
s

N∑

i=1
P (s|i→kc, i < kc)P (i|i < kc), (2.9)
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with P (i|i < kc) the probability to be in state i, given that i < kc. Bayes’ law
can be applied to find P (i|i < kc):

P (i|i < kc) = P (i < kc|i)P (i)
P (i < kc)

,

with:

• P (i) = π(N − i + 1), where we reversed the order in the steady-state
distribution (2.2) (see also Figure 2.5). Indeed, note that i is the initial
state at the moment of the attention switch, i.e., when being in the steady-
state regime from right before the switch, where state 1 was the target
state (the reverse of Figure 2.2).

• P (i < kc) =
kc−1∑
l=1

π(N − l + 1).

• P (i < kc|i) = 1 when i < kc and = 0 otherwise.

Plugging this into (2.9) and using the definition of the MHT in (2.7) and the
steady-state distribution in (2.2), we eventually find:

ESD(p(τ), τ,N) = τ
rkc+1 − rkc
rkc − r

kc−1∑

i=1
r−ihkc(i), (2.10)

where hkc(i) is given by (2.8). Note that the ESD(p(τ), τ,N) (2.10) implicitly
depends on N as the state index kc = dc(N − 1) + 1e depends on N .

Given the p(τ)-performance curve of an AAD algorithm, constructed by
piecewise linear interpolation through the points (τi, pi), i ∈ {1, . . . , I} on
the p(τ)-performance curve for which the AAD performance is evaluated on real
data5, the optimal working point (τopt, popt) is defined as the pair for which the
ESD(p(τ), τ,N) is minimal, given that N obeys the constraints of Section 2.2.3.

2.2.5 The minimal expected switch duration

Optimizing N, τ , and p now results in an optimal Markov chain that satisfies
the stability constraints and has minimal ESD. The minimal ESD over the p(τ)-
performance curve, which gave rise to the optimal working point (τopt, popt),
can now be used as a single-number metric, referred to as the minimal expected

5In this chapter, we assume that p is fixed and evaluated over all data windows (batch).
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2.2 Expected switch duration

switch duration (MESD), allowing to compare different AAD algorithms or
parameter settings of the latter. This metric is defined as follows:

Minimal expected switch duration (MESD)

The minimal expected switch duration (MESD) is the expected time
required to reach a predefined stable working region defined via the
comfort level c, after an attention switch of the hearing device user,
in an optimized Markov chain as a model for an adaptive gain control
system. Formally, it is the expected time to reach the comfort level c in
the fastest Markov chain with at least Nmin states for which x̄ ≥ c, i.e.,
the lower bound x̄ of the P0-confidence interval is above c:

MESD = min
N,τ

ESD(p(τ), τ,N)

s.t. x̄ ∈ [c, 1]
N ≥ Nmin,

(2.11)

where ESD(p(τ), τ,N) as in (2.10) and x̄ = k̄−1
N−1 , with k̄ as in (2.4).

The solution of optimization problem (2.11) is straightforward, given that
ESD(p(τ), τ,N) is monotonically nondecreasing with N (see the proof in
Appendix 2.E) for a fixed τ . Therefore, for each τ , choose the minimum N̂τ
such that the two inequality constraints of (2.11) are obeyed (in Appendix 2.C,
it is proven that such an N̂τ can always be found). As such, N is removed from
the optimization problem, resulting in an unconstrained optimization problem:

MESD = min
τ

ESD(p(τ), τ, N̂τ ).

The MESD is then defined as the minimal ESD over all window lengths τ , at
optimal working point (τopt, popt). Algorithm 1 summarizes the computation of
the MESD metric.

It is important to minimize the ESD over an as large as possible interval of
decision window lengths, especially towards short decision window lengths. As
a rule of thumb, assuming a monotonically decreasing accuracy with decreasing
decision window length, one should consider a larger evaluation interval when
the optimal working point (τopt, popt) obtained in Algorithm 1 is located at the
boundary of the evaluated interval.

As an inherent by-product of the optimization problem in (2.11), the MESD
metric also results in an optimal adaptive gain control system - optimal number
of gains N and optimal working point (τopt, popt) - for a neuro-steered hearing
device.
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2 An interpretable performance metric for AAD algorithms

Algorithm 1: Computation of the MESD metric
(code available in MESD toolbox [145])
Input: Evaluated points on the p(τ)-performance curve (τi, pi), i ∈ {1, . . . , I},
the required number of interpolated samples K of the performance curve
p(τ) and the hyperparameters: confidence interval P0, lower bound c, and
minimum number of states Nmin. In order to standardize future AAD algorithm
evaluations, the suggested default values are K = 1000, P0 = 0.8, c = 0.65 and
Nmin = 5 (Section 2.3.1).
Output: MESD, (τopt, popt)
1: Construct K samples of the performance curve p(τ) by piecewise linear

interpolating through evaluated points (τi, pi), i ∈ {1, . . . , I}
2: for each sampled τ do
3: Find N̂τ by going over the candidate values N = Nmin + i, with i =

0, 1, 2, . . . , in this specific order, until the first value N is found that
satisfies:

k̄ − 1
N − 1 ≥ c and N ≥ Nmin,

with

k̄ =
⌊

log
(
rN (1− P0) + P0

)

log(r) + 1
⌋
and r = p(τ)

1− p(τ) .

4: Given N̂τ , compute

ESD(p(τ), τ, N̂τ ) = τ
rkc+1 − rkc
rkc − r

kc−1∑

i=1
r−ihkc(i),

with

hkc(i) = kc − i
2p− 1 + p(r−kc − r−i)

(2p− 1)2 and kc = dc(N − 1) + 1e

.
5: end for
6: The MESD is equal to the minimum ESD over all sampled τ :

MESD = min
τ

ESD(p(τ), τ, N̂τ ),

obtained at optimal working point (τopt, popt) = (τopt, p(τopt)).
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2.3 Experiments

We illustrate the MESD by applying the AAD algorithm in [74] on Dataset A,
which consists of 72 minutes of recorded EEG and audio data per subject (16
normal-hearing subjects). The subjects were instructed to listen to a specific
speech stimulus in a competing two-speaker situation, including 24 minutes
of repetitions but without inter-trial attention switches. The 64-channel EEG
data are bandpass filtered between 1–9 Hz and downsampled to 20 Hz. The
speech envelopes are computed using a power-law operation with exponent 0.6
after subband filtering [1] and are afterwards similarly bandpass filtered and
downsampled. We assume that the clean envelopes of the original speech signals
are available.

A linear spatio-temporal decoder, where the temporal dimension of the filter
covers from 0 to 250 ms post-stimulus, is trained to decode the attended speech
envelope from the EEG data by minimizing the mean squared error (MMSE)
between the actually attended and reconstructed speech envelope on a training
set. Per-subject decoders are trained and tested in a leave-one-segment-out
(LOSO) fashion, using segments of consistent attention with a length of 60 s.
We apply the same adaptations to [74] as in [1], by training one decoder across
all training segments and not averaging per-segment decoders. At test time, the
trained filter decodes a speech envelope from a decision window of left-out EEG
data of length τ (which is a subset of the left-out 60 s segment). The Pearson
correlation coefficient is computed between the reconstructed speech envelope
and the envelopes of both signals presented to the subject. The speech stream
with the highest correlation is identified as the attended speaker.

To evaluate the algorithm on shorter decision window lengths, the left-out
segment is segmented into shorter decision windows on which the corresponding
decoder is applied. Reusing the decoders allows for a fair comparison of the
algorithm across different decision window lengths. The percentage of correct
decisions p, per subject and decision window length τ , is computed as the total
number of correct decisions divided by the total number of decisions across all
segments.

2.3.1 Hyperparameter choice

The MESD depends on three hyperparameters: the confidence level P0, the
lower bound of the desired operating region c, and the minimum number of
states Nmin. When optimizing the design of a gain control system, the values
of these hyperparameters can be set in a user-dependent fashion according to
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2 An interpretable performance metric for AAD algorithms

individual users’ needs and hearing capabilities (in particular for the desired
comfort level c, which is very personal). However, in order to use the MESD
as a standardized performance metric for comparing AAD algorithms, we also
determined reasonable values for these hyperparameters and propose them
as fixed inherent parameters of the MESD performance metric as a standard
for future AAD algorithm comparison. We already motivated the choice for
Nmin = 5 in Section 2.2.3.

In order to find a value for the comfort level c, we need to determine the SNR
(between attended and unattended speaker) corresponding to relative gain level
x = 1 (SNRmax) and the SNR corresponding to relative gain level x = c (SNRc).
Using that x = 0.5 corresponds to 0 dB, x = c can be found from:

c = 10SNRc/20 − 1
2(10SNRmax/20 − 1) + 0.5. (2.12)

We here define SNRmax objectively as the speech reception threshold (SRT),
corresponding to the 50% speech intelligibility level of the suppressed speaker,
which should enable the hearing device user to understand the suppressed
speaker sufficiently, in order to assess whether they want to switch attention.
Correspondingly, we define SNRc as the SNR where there is full speech
understanding and where the listening effort saturates, i.e., a higher SNR
does not result in a better speech understanding nor less listening effort.
Ohlenforst et al. [146] investigated the correct sentence recognition scores
and peak pupil dilation, which quantifies the listening effort, when listening to
standard Dutch sentences in the presence of a competing talker masker at SNRs
corresponding to daily-life conditions. For normal-hearing subjects, in their test
setup, the average SRT corresponded to−11.2 dB (see Table 1 in [146]), such that
SNRmax = 11.2 dB (as SNRmax is defined from the perspective of the attended,
dominantly amplified speaker), while the correct sentence recognition score and
listening effort saturate around 5 dB (see Fig. 1 in [146]). Plugging both values
into (2.12) results in c = 0.65. We performed an additional subjective listening
test on a story stimulus, which confirms that this is also a representative value
for connected discourse stimuli (details on this experiment can be found in
Appendix 2.F).

Correspondingly, we choose P0 = 0.8, i.e., we require the system to be in the
‘comfortable’ operating region for 80% of the time. This confidence level yields a
good trade-off between a high confidence level and a short enough MESD. Larger
confidence levels result in a steep increase in MESD, yielding very high switch
durations that are impractical due to an overly strict confidence requirement.

A graphical analysis of the influence of the hyperparameters on the MESD
metric is given in Appendix 2.G.
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2.3.2 Illustrative example: MESD-based performance
evaluation

To illustrate why and how the MESD is useful in the evaluation of AAD
algorithms, we apply it to an illustrative example in which we compare two
variants of the MMSE decoder for AAD as proposed in [74] and [1], respectively.

Description of the two variants

Given a training set of M data segments, in the first variant of O’Sullivan et
al. [74] (also adopted in, for example, [147]), per-segment (corresponding to
decision window length τ) decoders are computed, after which the M decoders
are averaged to obtain one final decoder. The second variant of Biesmans et
al. [1] (also adopted in, e.g., [4, 110, 112]) first averages the M per-segment
autocorrelation matrices (or equivalently: the segments are all concatenated)
to train a single decoder across all training segments simultaneously. We refer
to Section 3.2.1 and Figure 3.3 for more information. Similarly to [1], `2-norm
regularization is added to the former method to avoid overfitting effects due to
the small amount of data per decoder. No regularization is needed in the latter
method because more data are used to train the decoder [1]. The decoders
are again cross-validated in a LOSO-CV manner, and the decoding accuracy is
registered per regularization constant (between 10−5 and 102, relative to the
mean eigenvalue of the EEG autocorrelation matrix), for every decision window
length. Again, the LOSO-CV is performed based on 60 s-segments in order
to keep the amount of training data constant for all decision window lengths.
These segments are further segmented in shorter windows when the decision
window length decreases. Finally, for every window length τ , the maximum
decoding accuracy as a function of the regularization parameter is kept. Note
that both variants thus use overall the same large amount of training data for
each decision window length. When using a shorter decision window length,
the decoders do not change for averaging autocorrelation matrices (as all data
can be concatenated and the cross-validation (CV) is always done based on
60 s-segments), while for averaging decoders, more decoders are averaged out,
each trained with a smaller amount of data.

Subject-averaged comparison

The accuracies are averaged over all 16 subjects, resulting in one performance
curve per variant, shown in Figure 2.6 (with the standard deviation indicated
by the shading). These performance curves can be interpreted in two ways,
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Figure 2.6: The MESD focuses on short decision window lengths as the relevant
part of the performance curve, based on which it can be concluded that averaging
autocorrelation matrices outperforms averaging of decoders.

leading to two different conclusions depending on where we look. When looking
at the region where τ > 30 s, one could conclude that both methods perform
equally. This is because enough data are still used in the estimation of the
per-segment decoders in the method of [74]. However, in the region where
τ < 30 s, one could conclude that averaging autocorrelation matrices is superior
to averaging decoders, although, in total, an equal amount of training data has
been used. Here, the loss of information when estimating decoders on short
segments is not appropriately compensated by the averaging of a large number
of decoders. Based on this analysis, it is not clear what the proper conclusion
is, as it is a priori not clear which decision window lengths are more relevant in
an AAD-based adaptive gain control system.

Here, the MESD and the corresponding optimal working point can resolve
the dilemma mentioned above. Averaging autocorrelation matrices leads to an
optimal Markov chain of seven states (optimized as in Sections 2.2.3 and 2.2.4),
achieved at optimal working point (τopt, popt) = (2.54 s, 0.62) where the ESD is
minimal. Taking a lower accuracy and shorter decision window length would
result in more states (Section 2.2.3), which is not compensated by the shorter
decision window length, resulting in a longer ESD. The number of states could
be further minimized to five by increasing the decision window length, but the
limited decrease in target state kc from five to four does not compensate enough
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for the increase in the decision window length. More details can be found in
Appendix 2.H. A different optimal working point is chosen by the MESD metric
for the case of averaging decoders, namely (τopt, popt) = (11.28 s, 0.68), meaning
that it chooses for a slower, but more accurate decision process. Nevertheless,
the MESD focuses in both cases on the shorter decision window lengths, based on
a relevant and realistic criterion, and thus overcomes potential inconclusiveness.
It points at averaging autocorrelation matrices as a better way of computing the
MMSE decoder, as it allows users to switch almost three times as fast (22.8 s
versus 58.8 s).

Statistical comparison

Instead of analyzing a single performance curve by averaging the performance
curves per subject, which has the advantage of resulting in a single, generally
optimal Markov chain and an easy-to-interpret overall picture of the performance,
one could also first compute the MESD per subject and perform a comparison
based on these MESD performances using proper statistical testing procedures.
A key aspect is that the MESD is a single-number metric, thereby allowing to
straightforwardly perform statistical tests while inherently taking the accuracy
versus decision window length trade-off into account. A paired, one-sided non-
parametric Wilcoxon signed-rank test shows that the averaging of decoders
significantly performs worse than the averaging of autocorrelation matrices
(n = 16, p-value < 0.001). This confirms the conclusion of Biesmans et al. [1],
but more firmly, as we focused on the impact on a gain control system instead of
arbitrarily choosing a decision window length to evaluate the related accuracy.

2.3.3 Comparison of ITRW/N and MESD

Similar to the ITRW/N, the MESD quantifies the combination of the accuracy
and decision time (window length) of an algorithm. As advocated before,
the MESD uses, by design, a more relevant criterion to optimize the decision
window length and accuracy in the context of AAD algorithms for gain control in
hearing devices. By taking the maximum ITRW/N (max-ITR) over all decision
window lengths, one can define an alternative single-number metric (albeit
less interpretable than the MESD). There is, however, a clear quantitative
nonlinear relation between both metrics (Figure 2.7a). Both the maximum of
the Wolpaw ITRW (2.1) (blue) and Nykopp ITRN

6 (orange) are shown. Per
subject, the performances are evaluated using MMSE decoders with averaging
of autocorrelation matrices. Due to the nonlinearity, a significant difference

6The COCOHA MATLAB toolbox [148] has been used to compute ITRN.
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in the max-ITRW/N does not automatically imply a significant difference in
MESD (and vice versa).

To highlight the differences between both metrics, we also compare the ESD,
using the optimal working point based on maximizing the ITRW (ESDITRW),
with the MESD (thus minimizing the ESD). Figure 2.7b shows the per-subject
differences in switch duration between the original MESD and the ESDITRW (a
similar experiment can be conducted for ITRN). For the majority of the subjects,
there is a clear increase in switch duration, which already indicates that the
ITRW criterion does not select a working point on the p(τ)-performance curve
that leads to an optimal working point for an adaptive gain control system,
and, therefore, is not a representative metric to evaluate AAD algorithms in the
context of neuro-steered hearing devices. Moreover, several relative differences
between subjects have changed, indicating that both criteria fundamentally
differ. A non-parametric Wilcoxon signed-rank test (n = 16, p-value < 0.001)
confirms that there is significant difference between both switch durations.
Optimality in the case of ITRW thus has a fundamentally different and less clear
interpretation than in the case of the MESD, which stems from the fact that
ITRW/N focuses on optimizing ITR as such, which is different from optimizing
and stabilizing a gain control system.

In conclusion, it is more relevant to perform (statistical) analysis on a metric
that represents a major goal in the context of hearing devices: fast, accurate,
and stable switching.

2.4 Conclusion

In this chapter, we have developed a new interpretable performance metric to
evaluate AAD algorithms for AAD-based gain control: the minimal expected
switch duration. This metric quantifies the expected time to perform a gain
switch after an attention switch of the user in an AAD-based adaptive gain
control system, towards a comfort level (c = 0.65) that can be maintained for
at least 80% of the time. It is based on the concept of the MHT in a Markov
chain model, which resulted in a closed-form expression because of the specific
line-graph structure. The MESD can be computed from the performance curve
of an AAD system by minimizing the ESD over this curve, after designing an
optimal Markov chain such that it is for P0 = 80% of the time in an optimal
operating region. As a by-product, the derivation of the MESD also results in
a design methodology for an optimal AAD-based volume control system (see
also Section 8.2). The fact that the MESD provides a single-number AAD
performance metric that combines accuracy and decision window length and that
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Figure 2.7: (a) A fitted rational model max-ITRW(MESD) = a
MESD+b shows that

there is a nonlinear relationship between the max-ITRW and MESD. (b) Minizing the
ESD (MESD) results in a significantly lower switch duration than optimizing the ESD
based on the max-ITRW (ESDITRW), indicating that the MESD and ITRW quantify
performance in a fundamentally different way.

is also interpretable and relevant within the context of neuro-steered hearing
devices is paramount in order to uniformize the evaluation of AAD algorithms
in this context.

Experiments on real EEG and audio data showed that this metric can be used to
globally compare AAD systems, both between subjects and between algorithms.
Finally, we showed that the MESD is quantitatively related to the ITRW/N
but that it uses a fundamentally different criterion that is more relevant in the
context of hearing devices.

As a final remark, note that this metric can be easily extended to other BCI
applications. In, for example, one-dimensional cursor control using EEG (see,
for example, [149]), it could be used to quantify the expected time needed to
move a cursor or object from one end to the other end in a stable fashion.
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Appendices

2.A The steady-state distribution

The steady-state distribution can be found from the global balance equations
and the normalization condition [150]:





π(i) =
N∑

l=1
π(l)pli, (balance equations)

N∑

l=1
π(l) = 1 (normalization condition)

where pli corresponds to the transition probability from state l to state i. We
can solve the balance equations recursively, starting from π(1):

π(1) = π(1)q + π(2)q ⇔ π(2) = 1− q
q

π(1) = p

q
π(1),

π(2) = π(1)p+ π(3)q ⇔ π(3) = ( p
q2 −

p

q
)π(1) = p2

q2 π(1),

...

By working out the recursion further on and by defining p
q = r, it can be seen

that:
π(i) = pi−1

qi−1 π(1) = ri−1π(1),∀ i ∈ {2, . . . , N}.

π(1) can be found from the normalization condition:

N∑

l=1
π(l) = π(1)

N∑

l=1
rl−1 = rN − 1

r − 1 π(1) = 1

⇔ π(1) = r − 1
rN − 1 .
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2.B The lower bound of the P0-confidence interval

Starting from (2.3) and using the steady-state distribution in (2.2), we obtain:

r − 1
rN − 1

N∑

j=k̄

rj−1 ≥ P0 ⇔
r − 1
rN − 1

rN − rk̄−1

r − 1 ≥ P0

⇔ rN − rk̄−1

rN − 1 ≥ P0

Since we assume that p > 0.5, it holds that r > 1. Hence, both the numerator
and denominator are positive. Furthermore, the log-function is a monotonically
increasing function, such that it can be applied to both sides without changing
the inequality:

rN − rk̄−1

rN − 1 ≥ P0 ⇔ rN − rNP0 + P0 ≥ rk̄−1

⇔ log
(
rN (1− P0) + P0

)

log(r) + 1 ≥ k̄.

Flooring the last expression leads to (2.4).

2.C Proof of the existence of a solution for N

In this appendix, we prove that there always exists a solution for N such
that (2.6) is satisfied. Using (2.4), it can be seen that:

k̄ − 1 =
⌊

log
(
rN (1− P0) + P0

)

log(r)

⌋

>
log
(
rN (1− P0) + P0

)

log(r) − 1 >
log
(
rN (1− P0)

)

log(r) − 1,

such that the constraint (2.6) is always satisfied when

log
(
rN (1− P0)

)

log(r) − 1 ≥ c(N − 1). (2.13)

Solving for N yields:
N ≥ 1− log(1− P0)

log(r)(1− c) .
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2.D The mean hitting time

The MHT can be found from the recursive definition in [150]:




hj(i) = 0, i = j

hj(i) = 1 +
N∑

l=1,l 6=j
pilhj(l), i 6= j

(2.14)

When i ≤ j, hj(i) can be found by starting the recursion in (2.14) with hj(1):

hj(1) = 1 + hj(2)p+ hj(1)q ⇔ hj(1) = 1
p

+ hj(2),

hj(2) = 1 + hj(1)q + hj(3)p⇔ hj(2) = 1
p

+ q

p2 + hj(3),

...

Eventually, it can be found that:

hj(i) = 1
p

+ q

p2 + q2

p3 + · · ·+ qi−1

pi
+ hj(i+ 1),∀ i ≤ j.

For i = j − 1, this results in:

hj(j − 1) = 1
p

+ q

p2 + q2

p3 + · · ·+ qj−2

pj−1 ,

where hj(j) = 0 because of (2.14). By propagating the solutions backwards, we
find:

hj(i) = (j − i)
i∑

l=1

ql−1

pl
+

j−1∑

l=i+1

(j − l)ql−1

pl
.

By computing the sums and simplifying the expressions, the expression in (2.8)
is found.

2.E Proof ESD(p, τ,N) is monotonically non-decreasing with
N

We prove that the ESD(p, τ,N) in (2.10) is monotonically non-decreasing with
N . Starting from (2.9) and using Bayes’ law as in Section 2.2.4, the ESD can
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be written as:

ESD(p(τ), τ,N) = τ
kc−1∑
l=1

r−l

kc−1∑

i=1
r−ihkc(i). (2.15)

ESD(p(τ), τ,N) only implicitly depends on N via kc = dc(N − 1) + 1e. We
use the notation kc(N) to explicitly show that kc is a function of N . Note
that kc(N + 1) ≤ kc(N) + 1 as kc(N + 1) = dcNe + 1, while kc(N) + 1 =
dcN + 1 − ce+ 1 ≥ dcNe+ 1 as c ≤ 1. Furthermore, kc(N) is monotonically
increasing with N . This means that there are two possibilities: when N → N+1,
then either kc → kc or kc → kc + 1.

• Case kc → kc: from (2.15) it can be easily seen that in this case
ESD(p(τ), τ,N + 1) = ESD(p(τ), τ,N), as hkc(i) (2.8) only depends on
kc and not explicitly on N .

• Case kc → kc + 1: the proof boils down to proving that:

kc∑
i=1

r−ihkc+1(i)

kc∑
l=1

r−l
≥

kc−1∑
i=1

r−ihkc(i)

kc−1∑
l=1

r−l
. (2.16)

If we can show that ∀ i ≤ kc − 1:

r−ihkc+1(i)
kc∑
l=1

r−l
≥ r−ihkc(i)

kc−1∑
l=1

r−l
, (2.17)

then (2.16) is true (note that r−kchkc+1(kc)
kc∑
l=1

r−l
≥ 0). From (2.8) it can be

found that:
hkc+1(i) = hkc(i) + 1− r−kc

2p− 1 .

By using the previous result and substituting hkc(i) with (2.8) in (2.17),
we eventually find, after some straightforward algebraic manipulations,
that (2.17) boils down to:

(1− r−kc)(rkc − r) ≥ (r − 1)
(
kc − i+

p
(
r−kc − r−i

)

2p− 1

)
.
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After some further manipulation and using r = p
1−p , this becomes:

rkc − r − 1 ≥ (r − 1)(kc − i)− r−i+1. (2.18)

We now show that the right-hand side of (2.18) is a decreasing function
with i ≤ kc− 1. If f(i) = (r− 1)(kc− i)− r−i+1, then f(i+ 1) is equal to:

f(i+ 1) = f(i) + (r−i − 1)(r − 1) < f(i).

because r > 1 and i ≥ 1. Given that the right-hand side of (2.18) is
decreasing with i, we only have to proof (2.18) for i = 1:

rkc − r ≥ (r − 1)(kc − 1), (2.19)

which can be easily proven by induction. For kc = 2 it holds that:

r2 − r ≥ r − 1⇔ (r − 1)2 ≥ 0,

which is evidently true. Now we prove that if (2.19) is true for kc = j ≥ 2,
then it is also true for kc = j + 1. Setting kc = j, (2.19) can be rewritten
as

rj − 1 ≥ (r − 1)j. (2.20)
Furthermore, since r > 1, we have that rj+1 − r ≥ rj − 1 and
therefore (2.19) holds for kc = j + 1, using the induction hypothesis
in (2.20). This concludes the proof.

2.F Validation of the comfort level c

To validate the chosen c-value (c = 0.65) of Section 2.3.1 in case of a (more
relevant) connected discourse stimulus instead of standard sentences (as used
in Section 2.3.1), we conducted a subjective listening experiment to determine
SNRc. Eight normal-hearing participants, aged between 24 and 29 and with
Dutch as their mother tongue, were asked to listen to a mixture of two non-
standardized, commercial recordings of stories, 6 min and 34 s long. The stimuli
were biologically calibrated. The participants were allowed to adapt the SNR
with a slider between 0 and 50 dB and were instructed to select the minimal SNR
(between the dominantly amplified speaker and the competing speaker) that
still allowed them to comfortably listen to the dominantly amplified speaker for
a duration of, for example, 30 min. When they selected a value for SNRc, they
were instructed to listen to the dominantly amplified speaker for three more
minutes at their selected SNRc, where now the previously suppressed speaker is
the dominantly amplified speaker. As a validation procedure, the participants
self-reported their listening effort, probing the amount of effort required to
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understand the loudest speaker. A review of the self-reported listening effort
and other methods to assess listening effort can be found in [151]. The minimal
reported, maximal reported, and median SNRc is equal to 4.56 dB, 23.55 dB
and 10.89 dB. All reported listening efforts were below 25%.

To obtain the SRT, we used the results from Decruy et al. [152], where they
performed a similar experiment (using similar conditions) in an age-matched,
normal-hearing group to determine the SRT of connected discourse using the
self-assessed Békesy procedure. We use the median SRT = −16.27 dB as a
value for SNRmax = 16.27 dB. Note that this SRT differs from the one reported
in Section 2.3.1, as we are now dealing with a connected discourse instead
of standard sentences, while also a different procedure for assessing speech
intelligibility has been used.

The resulting c-value is equal to c = 0.727 (2.12). Given the large variability
on the reported comfort level, we consider this value reasonably close to the
proposed value c = 0.65, which was calculated based on data from the literature.

2.G The relation between the MESD and the
hyperparameters

Figure 2.A shows how the MESD metric depends on the hyperparameters P0
(the confidence level) and c (the comfort level). The MESDs are based on the
results of an MMSE-based decoder with averaging of autocorrelation matrices,
described in Section 2.3 and Figure 2.6. When varying one hyperparameter, the
other hyperparameters are kept constant at their default values (P0 = 0.8, c =
0.65, Nmin = 5). The black diamonds indicate the chosen hyperparameter
value. Figure 2.Aa shows that P0 = 0.8 yields a good trade-off between a
high confidence level and a short enough MESD. As the MESD has a positive
second-order derivative as a function of P0, an extra amount of confidence
results in an even larger increase in MESD, which is why it is important to
choose its value as low as possible, without giving too much in on the reliability
of the gain control system.

The MESD is a discrete function of the comfort level c (Figure 2.Ab) because of
the flooring operation in (2.4). As the lower bound of the P0-confidence interval
needs to be above comfort level c, a higher comfort level results in more states
and thus in a higher MESD. Again, higher comfort levels result in a steeper
increase in switch duration. The comfort level c = 0.65 that resulted from the
analysis and experiments in Sections 2.F and 2.3.1 seems to avoid this high cost
of extra comfort while assuring, by design, enough comfort for the user.
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0.5 0.8 1
0

22.8

150

P0 = 0.8
(chosen confidence level)

P0

MESD [s]

(a)

0.5 0.65 1
0

22.8

150

c = 0.65 (chosen comfort level)

c

MESD [s]

(b)

Figure 2.A: The MESD increases as a function of (a) the confidence level P0, with a
positive second-order derivative, and (b) the comfort level c, in a discrete way, also with
an increasing slope. The MESDs are shown for the performance curve of the MMSE-
based decoder with averaging of autocorrelation matrices. A diamond (�) indicates
the chosen confidence level and comfort level. When varying a hyperparameter, the
other hyperparameter is kept constant at the default value (c = 0.65, P0 = 0.8).

2.H The ESD and number of states as a function of the
decision window length

In Section 2.3.2, the MESD has been applied to the performance curve of
the MMSE-based decoder with averaging of autocorrelation matrices versus
averaging decoders (Figure 2.6). We mentioned that the optimal MESD for
averaging autocorrelation matrices is obtained at a Markov chain of seven states.
Figure 2.B shows the optimal number of states N̂τ , target state kc, and the
ESD (at the optimal number of states N̂τ ) per decision window length. It is
over this curve that the ESD is minimized to obtain the MESD (Section 2.2.5
and Algorithm 1).

In Figure 2.B, it can be seen that when N̂τ remains constant, the ESD increases
almost linearly with decision window length τ . In (2.10), when the number of
states N and thus target state kc remains constant, it appears that the step
time τ is the dominant factor over the variation in transition probability p.
This implies that the interesting decision window lengths coincide with changes
in the number of states. Relative to N̂τ = 7 at the MESD, an increase in
decision window length results in a decrease of N̂τ to five. However, the target
state kc only decreases from five to four, such that the drop in ESD around
≈ 6 s is not large enough to decrease below the minimal ESD for seven states.
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Figure 2.B: The optimal number of states N̂τ and corresponding target state kc
decrease as a function of the decision window length τ . The minimal ESD (MESD)
depends both on the optimal number of states (via the AAD accuracy) and the decision
window length.

When decreasing τ , N̂τ and kc steeply increase because of the steep decrease
in accuracy (Figure 2.6), which is not sufficiently compensated by the small
decrease in step time τ . The AAD accuracy p (depending on decision window
length τ) thus mainly plays a role in determining the optimal number of states
N̂τ via the design constraints (Section 2.2.3), which is the first step in optimizing
the ESD (Section 2.2.5 and Algorithm 1), while the transition points of N̂τ
are most interesting for minimizing the ESD to obtain the MESD, as the ESD
almost linearly increases with τ for a constant N̂τ .
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3 | A comparative review study of
AAD algorithms

This chapter is based on S. Geirnaert, S. Vandecappelle, E. Alickovic,
A. de Cheveigné, E. C. Lalor, B. T. Meyer, S. Miran, T. Francart,
and A. Bertrand, "Electroencephalography-Based Auditory Attention
Decoding: Toward Neurosteered Hearing Devices," IEEE Signal
Processing Magazine, vol. 38, no. 4, pp. 89-102, 2021. Some parts
of the introduction and the discussions in Section IV of the paper have
been moved to Chapter 1. Two extra figures (Figures 3.3 and 3.4) and
an extra discussion on newer AAD algorithms (Sections 3.2.1 and 3.2.2)
have been added.

ABSTRACT | Recent neuroscientific advances have shown that it is possible
to determine the focus of auditory attention from non-invasive neurorecording
techniques, such as EEG. Based on these new insights, a multitude of AAD
algorithms have been proposed, which could, combined with the appropriate
speaker separation algorithms and miniaturized EEG sensor devices, lead to
so-called neuro-steered hearing devices to assist people suffering from hearing
impairment in ‘cocktail party’ scenarios (Section 1.7). In this chapter, we provide
a broad review and a statistically grounded comparative study of EEG-based
AAD algorithms on different datasets. Based on the MESD performance metric
of Chapter 2, we conclude that even the best linear SR method is too slow for
practical purposes. Decoding the spatial focus of auditory attention shows to
be a promising alternative. Furthermore, it turns out to be hard to replicate
the results of nonlinear (DNN-based) algorithms on multiple independent AAD
datasets. Lastly, we give an outlook on the main signal processing-related
challenges in the field, of which two are addressed in Parts II and III.
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3 A comparative review study of AAD algorithms

3.1 Introduction

As explained in Chapter 1, recent neuroscientific insights on how the brain
synchronizes with the speech envelope have laid the groundwork for a new
strategy to tackle the AAD problem: extracting attention-related information
directly from the origin, i.e., the brain. Following these breakthroughs, several
different (EEG-based) AAD algorithms have been proposed. O’Sullivan et
al. proposed in [74] a first successful speech-based AAD algorithm using
unaveraged single-trial EEG data. The main idea of [74] is to decode the
attended speech envelope from a multi-channel EEG recording using a neural
decoder and correlate the decoder output with the speech envelope of each
speaker. Following this seminal work, many new AAD algorithms have been
developed [1,44,119,136,138–141,143,147,153–156]. As explained in Section 1.7,
these advances could, in combination with effective speaker separation algorithms
and relying on rapidly evolving improvements in miniaturization and wearability
of EEG sensors, lead to a new assistive solution for the hearing impaired: a
neuro-steered hearing device (Figure 1.6).

Despite the large variety in AAD algorithms, an objective and transparent
comparative study has not been performed to date, making it hard to identify
which strategies are most successful. In this chapter, we will briefly review
different types of AAD algorithms and their most common instances, and
provide an objective and quantitative comparative study using two independent,
publicly available datasets (Dataset A and Dataset B). This comparative study
has been reviewed and endorsed by the author(s) of the original papers in which
these algorithms were proposed to ensure fairness and correctness.

3.2 Review of AAD algorithms

In this section, we provide a brief overview of various AAD algorithms. This
comparative study includes only papers published before the year 2020, when
the paper on which this chapter is based was conceptualized. However, since
this field is quickly progressing and several new papers have appeared since
the conceptualization of this article, the reader is encouraged to look up new
AAD algorithms (and extensions thereof) and compare them with the presented
methods. Therefore, at the end of Sections 3.2.1 and 3.2.2, we have added a few
of these newer papers, which are, however, not further used in this comparative
study.

For the sake of an easy exposition, we assume that there are only two speakers
(one attended and one unattended speaker), although all algorithms can be

64



3.2 Review of AAD algorithms

generalized to more than two speakers. In the remainder of this chapter, we
also make abstraction of the speaker separation and denoising block in a neuro-
steered hearing device (Figure 1.6) and assume that the AAD block has direct
access to the envelopes of the original unmixed speech sources, as often done in
the AAD literature. An extended discussion on the combination of both blocks
can be found in Section 1.7.2.

Most AAD algorithms adopt a stimulus reconstruction (SR) approach (also
known as backward modeling or decoding). In this strategy, a multi-input single-
output (MISO) neural decoder is applied to all EEG channels to reconstruct
the attended speech envelope. This neural decoder is pre-trained to optimally
reconstruct the attended speech envelope from the EEG data while blocking
other (unrelated) neural activity. It is in this training procedure that most AAD
algorithms differ. The reconstructed speech envelope is afterwards correlated
with the speech envelopes of all speakers, after which the one with the highest
Pearson correlation coefficient is identified as the attended speaker (Figure 3.2).
This correlation coefficient is estimated over a window of τ seconds, which
is referred to as the decision window length, corresponding to the amount of
EEG data used in each decision on the attention. Typically, the AAD accuracy
strongly depends on this decision window length because the Pearson correlation
estimates are very noisy due to the low SNR of the output signal of the neural
decoder.

Alternatively, the neural response in each EEG channel can be predicted from the
speech envelopes via an encoder (also known as forward modeling or encoding)
and can then be correlated with the measured EEG [125,142,147]. When the
encoder is linear, this corresponds to estimating impulse responses (also called
temporal response functions (TRF)) between the speech envelope(s) and the
recorded EEG signals. For AAD, backward MISO decoding models have been
demonstrated to outperform forward encoding models [142,147], as the former
can exploit the spatial coherence across the different EEG channels at its input.
In this comparative study, we thus only focus on backward AAD models, except
for the canonical correlation analysis (CCA) algorithm (Section 3.2.1), which
combines both a forward and backward approach.

Due to the emergence of deep learning methods, a third approach has become
popular: direct classification [119,136]. In this approach, the attention is directly
decoded in an end-to-end fashion, without explicitly reconstructing the speech
envelope.

The decoder models are typically trained in a supervised fashion, which means
that the attended speaker must be known for each data point in the training set.
This requires collecting ‘ground-truth’ EEG data during a dedicated experiment
in which the subject is asked to pay attention to a predefined speaker in a speech
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mixture. The models can be trained either in a subject-specific fashion (based on
EEG data from the actual subject under test) or in a subject-independent fashion
(based on EEG data from other subjects than the subject under test). The latter
leads to a universal (subject-independent) decoder, which has the advantage
that it can be applied to new subjects without the need to go through such
a tedious ground-truth EEG data collection for every new subject. However,
since each person’s brain responses are different, the accuracy achieved by such
universal decoders is typically lower [74]. In this chapter, we only consider
subject-specific decoders, which allows achieving better accuracies, as they are
tailored to the EEG of the specific end-user. Transfer learning techniques,
which are becoming popular in the BCI field [38], may close the gap between
subject-specific and subject-independent models, although this remains to be
researched in the context of AAD (see also Part II).

Figure 3.1 depicts a complete overview and classification of all algorithms
included in our comparative study, discriminated based on their fundamental
properties. In the following sections, we distinguish between linear and nonlinear
algorithms.

3.2.1 Linear methods

All linear methods included in this study, which differ in the features shown in
the linear branch of Figure 3.1, adopt the so-called SR framework (Figure 3.2).
This boils down to applying a linear time-invariant spatio-temporal filter dc(l)
on the C-channel EEG xc(t) to reconstruct the attended speech envelope sa(t):

ŝa(t) =
C∑

c=1

L−1∑

l=0
dc(l)xc(t+ l), (3.1)

where c is the channel index, ranging from 1 to C, and l is the time lag index,
ranging from 0 to L−1, with L the per-channel filter length. The corresponding
MISO filter is anti-causal, as the brain responds to the stimulus, such that
only future EEG time samples can be used to reconstruct the current stimulus
sample. Equation (3.1) can be rewritten as

ŝa(t) = dtx(t),

using d ∈ RLC×1, collecting all decoder coefficients for all time lags and channels,
and

x(t) =
[
x1(t)t x2(t)t · · · xC(t)t]t ∈ RLC×1,

with xc(t) =
[
xc(t) xc(t+ 1) · · · xc(t+ L− 1)

]t
.
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EEG

x1(t)
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(tanh-activation)Input layer Output layer

(linear activation)

neural network

⊗
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envelope extraction

correlate

max attended
speaker

Figure 3.2: A conceptual overview of the linear SR algorithm and NN-SR.

The same indexing holds for the decoder d.

In the following three sections, we introduce the different linear methods
included in this study. These linear methods, which are all correlation-based,
can be extended to more than two competing speakers by simply correlating
the reconstructed speech envelope with all additional speech envelopes of the
individual competing speakers and taking the maximum.

Supervised minimum mean-squared error backward modeling (MMSE)

The most basic way of training the decoder, first presented in the EEG-based
AAD-context in [74], is by minimizing the mean squared error (MMSE) between
the actual attended envelope and the reconstructed envelope. In [1], it is
shown that minimizing the mean squared error is equivalent to maximizing
the Pearson correlation coefficient between the reconstructed and attended
speech envelope. Using sample estimates, assuming that there are T samples
available, the MMSE-based formulation becomes equivalent to the least-squares
(LS) formulation:

d̂ = argmin
d

||sa −Xd||22 , (3.2)
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with X =
[
x(0) · · · x(T − 1)

]t ∈ RT×LC and sa =
[
sa(0) · · · sa(T − 1)

]t ∈
RT×1. The normal equations lead to the solution

d̂ = (XtX)−1Xtsa.

The first factor corresponds to an estimation of the autocorrelation matrix

R̂xx = 1
T

T−1∑

t=0
x(t)x(t)t ∈ RLC×LC ,

while the second factor corresponds to the crosscorrelation vector

r̂xsa = 1
T

T−1∑

t=0
x(t)sa(t) ∈ RLC×1.

To avoid overfitting, two types of regularization are used in AAD literature: ridge
regression/`2-norm regularization and `1-norm/sparse regularization, also known
as the least absolute shrinkage and selection operator (lasso). The corresponding
cost functions are shown in Table 3.1, where the regularization hyperparameter λ
is defined relative to z = Tr(XtX)

LC (for ridge regression)/q = ||Xtsa||∞ (for lasso).
Similar to [147], we here use the alternating direction method of multipliers
(ADMM) to iteratively obtain the solution of the lasso problem. The optimal
value λ can be found using a CV scheme. Other regularization methods, such
as Tikhonov regularization, have been proposed as well [142].

Assume a given training set consisting of K data segments of a specific length
T . These segments can either be constructed artificially by segmenting a
continuous recording (usually for the sake of CV) or correspond to different
experimental trials (potentially from different subjects, for example, when
training a subject-independent decoder). There exist various flavors of combining
these different segments in the process of training a decoder. As suggested
in the seminal paper of O’Sullivan et al. [74], decoders dk can be trained per
segment k, after which all decoders are averaged to obtain a single, final decoder
d (Figure 3.3). Biesmans et al. proposed in [1] an alternative scheme (also
adopted in, e.g., [110–112,121,134,158]), where, instead of estimating a decoder
per segment separately, the loss function (3.2) (with regularization) is minimized
over all K segments at once. As can be seen from the solution in Table 3.1, this
is equivalent to first estimating the autocorrelation matrix and crosscorrelation
vector via averaging the sample estimates per segment, whereafter one decoder
is computed (Figure 3.3). It is easy to see that this is mathematically equivalent
to concatenating all the data in one big matrix X ∈ RKT×LC and vector
sa ∈ RKT×1 and computing the decoder straightforwardly. As such, it is an
example of the early integration paradigm, versus late integration in the former
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Figure 3.3: When averaging decoders, a decoder per segment is computed, whereafter
all decoders are averaged to obtain a single final decoder. One final decoder is
straightforwardly computed when averaging autocorrelation matrices, as it is equivalent
to concatenating all the data. ‘LS’ = least-squares, ‘AVG’ = averaging.

case when averaging K separate decoders. Both versions are included in our
comparative study.

Table 3.1 shows the four different flavors of the MMSE/LS-based decoder that
were proposed as different AAD algorithms in [1, 74, 147], adopting different
regularization techniques (`2/`1-regularization) or ways to train the decoder
(averaging decoders or correlation matrices).

Canonical correlation analysis (CCA)

CCA to decode the auditory brain has been proposed by de Cheveigné et
al. [153] and Dmochowski et al. [157]. It has been applied to the AAD problem
for the first time by Alickovic et al. [147]. CCA combines a spatio-temporal
backward (decoding) model wx ∈ RLC×1 on the EEG and a temporal forward
(encoding) model wsa ∈ RLa×1 on the speech envelope (Figure 3.4), with La
the number of filter taps of the encoding filter. In this sense, CCA differs from
the previous approaches, which were all different flavors of the same MMSE/LS-
based decoder. In CCA, both the forward and backward model are estimated
jointly such that their outputs are maximally correlated:

max
wx,wsa

E{(wt
xx(t))

(
wt
sasa(t)

)
}√

E{(wt
xx(t))2}

√
E{
(
wt
sasa(t)

)2}
= max

wx,wsa

wt
xRxsawsa√

wt
xRxxwx

√
wt
saRsasawsa

,

(3.3)
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Figure 3.4: In the CCA algorithm, both backward, decoding filters and forward,
encoding filters are applied to the EEG and audio envelopes, respectively, to maximize
the correlations between the outputs of the filters. An LDA classifier is used to
determine the attended speaker.

where sa(t) =
[
sa(t) sa(t− 1) · · · sa(t− La + 1)

]t ∈ RLa×1. As opposed
to the EEG filter wx, the audio filter wsa is a causal filter, as the stimulus
precedes the brain response. The solution of the optimization problem in (3.3)
can be easily retrieved by solving a generalized eigenvalue decomposition (details
in [1, 147]).

In CCA, the backward model wx and forward model wsa are extended to a set of
J filters Wx ∈ RLC×J and Wsa ∈ RLa×J for which the outputs are maximally
correlated, but mutually uncorrelated (the J outputs of Wt

xx(t) are uncorrelated
to each other and the J outputs of Wt

sasa(t) are uncorrelated to each other).
There are now thus J Pearson correlation coefficients between the outputs of the
J backward and forward filters (also called canonical correlation coefficients),
which are collected in the vector ρi ∈ RJ×1 for speaker i, whereas before, there
was only one per speaker. Furthermore, because of the way CCA constructs the
filters, it can be expected that the first components are more important than
the later ones. To find the optimal way of combining the canonical correlation
coefficients, a linear discriminant analysis (LDA) classifier can be trained, as
proposed in [153] (Figure 3.4). To generalize the maximization of the correlation
coefficients of the previous AAD algorithms (which is equivalent to taking
the sign of the difference of the correlation coefficients of both speakers), we
propose here to construct a feature vector f ∈ RJ×1 by subtracting the canonical
correlation vectors: f = ρ1 − ρ2, and classify f with an LDA classifier. As
proposed in [153], we use principal component analysis (PCA) as a preprocessing
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step on the EEG to reduce the number of parameters. In fact, this is a way
of regularizing CCA and can, as such, be viewed as an alternative to the
regularization techniques proposed in other methods.

Training-free MMSE-based with lasso (MMSE-adap-lasso)

Miran et al. proposed in [44] a fundamentally different AAD algorithm. In
this comparative study, all other AAD algorithms are supervised, batch-trained
algorithms, which have a separate training and testing stage. First, the decoders
need to be trained in a supervised manner using a large amount of ground-
truth data, after which they can be applied to new test data. In practice,
this necessitates a (potentially cumbersome) a priori training stage, resulting
in a fixed decoder, which does not adapt to the non-stationary EEG signal
characteristics, e.g., due to changing conditions or brain processes. The AAD
algorithm in [44] aims to overcome these issues by adaptively estimating a
decoder for each speaker and simultaneously using the outputs to decode
the auditory attention. Therefore, this training-free AAD algorithm has the
advantage of adapting the decoders to non-stationary signal characteristics,
however, without requiring the same large amount of ground-truth data as the
supervised AAD algorithms.

In this comparative study, we have removed the state-space and dynamic decoder
estimation modules to produce a single decision for each decision window, similar
to the other AAD algorithms in this study (the full description of the algorithm
can be found in [44]). This leads to the following formulation:

d̂i,l = argmin
d

||si,l −Xld||22 + λq ||d||1 , (3.4)

for the ith speaker in the lth decision window. In the context of AAD, for
every new incoming window of τ seconds of EEG and audio data, two decoders
are thus estimated (one for each speaker). As an attentional marker, these
estimated decoders could be applied to the EEG data Xl of the lth decision
window to compute the correlation with their corresponding stimulus envelopes.
In addition, Miran et al. [44] propose to identify the attended speaker by
selecting the speaker with the largest `1-norm of its corresponding decoder d̂i,l,
as the attended decoder should exhibit more sparse, significant peaks, while
the unattended decoder should have smaller, randomly distributed coefficients.
The regularization parameter is again being cross-validated and defined in the
same way as for MMSE-avgdec/corr-lasso. To prevent overfitting by decreasing
the number of parameters to be estimated, Miran et al. [44] have proposed to a
priori select a subset of EEG channels. In our comparative study, we also adopt
this approach and select the same channels.
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While we do not adopt the extra post-processing state-space modeling steps
from [44, 159] in order to focus on the core AAD algorithm, it is noted that
such an extra smoothing step, which also takes previous and/or future decisions
into account, can effectively enhance the performance of most AAD algorithms,
albeit at the cost of a potential algorithmic delay in the detection of attention
switches [44].

Other linear methods

Since the writing of the paper on which this chapter is based, other linear
AAD methods have been proposed which are not included in the comparative
study. For example, in Chapter 6, we will propose a novel CSP-based method
to decode the spatial focus of auditory attention [154]. Wang et al. proposed
in [160] to train different MMSE-based backward decoders to reconstruct the
attended speech envelope based on the root-mean-square level of the input
segments, which resulted in a significant improvement for shorter decision
windows. Kuruvila et al. proposed in [156] a sequential linear MMSE-based
dynamic estimation of TRFs, followed by the extraction of the N1-P2 peaks
of the estimated TRFs as features and a linear support vector machine (SVM)
classification. While this inherent temporal smoothing of AAD decision led
to higher performances, it also resulted in substantial delays in detecting an
attention switch.

3.2.2 Nonlinear methods

Nonlinear methods based on (deep) neural networks (DNNs) can adopt a
SR approach similar to the linear methods [143], but can also classify the
attended speaker directly from the EEG and the audio (referred to as direct
classification) [119,136]. However, these nonlinear methods are more vulnerable
to overfitting [136], particularly for the small-size datasets typically collected in
AAD research. In order to appreciate the differences between current neural
network-based AAD approaches, Figures 3.2, 3.5 and 3.6 show a conceptual
overview of the different strategies and network topologies of the presented
nonlinear methods. We give a concise description of each architecture below
but refer to the respective papers for further details.

Fully connected SR neural network (NN-SR)

de Taillez et al. proposed in [143] a fully-connected neural network with a single
hidden layer that reconstructs the envelope based on a window of EEG. As
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shown in Figure 3.2, the input layer consists of LC neurons (similar to a linear
decoder), with L the number of time lags and C the number of EEG channels.
These neurons are connected to a hidden layer with two neurons and a tanh
activation function. These two neurons are then finally combined into a single
output neuron that uses a linear activation function and outputs one sample
of the reconstructed envelope. As such, the network has 2× (LC + 1) (hidden
layer) +2 + 1 (output layer) ≈ 3446 trainable parameters.

The network is trained to minimize 1− ρ(ŝa, sa) over a segment of M training
samples (within this segment the neural network coefficients are kept constant),
with ρ(·) the Pearson correlation coefficient, and ŝa, sa ∈ RM×1 the reconstructed
and attended envelope, respectively. Minimizing this cost function is equivalent
to maximizing the Pearson correlation coefficient between the reconstructed
and attended speech envelope, similar to linear SR approaches. The trained
network is then used as a decoder, where the speech envelope showing the
highest correlation with the decoder output is selected as the attended speaker.
This algorithm can be extended to more than two competing speakers similar
to the other linear SR algorithms.

Convolutional neural network to compute similarity between EEG and
stimulus (CNN-sim)

Ciccarelli et al. proposed in [119] a convolutional neural network (CNN) to
directly compare a C × τ EEG window with a 1 × τ speech envelope. This
network is trained to output a similarity score ∈ [0, 1] (similar to the correlation
coefficient used in other approaches) between the EEG and the speech envelope
using a binary cross-entropy cost function. The speech envelope that, according
to the trained CNN, is most similar to the EEG is then identified as the attended
speaker. This approach can be easily extended to more than two speakers by
computing a similarity score for each speaker and taking the maximum over all
scores to identify the attended speaker.

The network, depicted in Figure 3.5, consists of two convolutional layers, with
max-pooling (stride two) after the first convolutional layer, and four fully
connected (FC) layers. In total, this network has 64 × (C + 1) × L1 (first
convolutional layer) +2× 64× L2 (second convolutional layer) +200× 3 (first
FC layer) +200 × 201 (second FC layer) +100 × 201 (third FC layer) +101
(fourth FC layer) ≈ 69070 trainable parameters. An exponential linear unit
is used as a nonlinear activation function. Furthermore, drop-out is used as
a regularization technique to prevent overfitting in the FC layers, while also
batch normalization is used throughout the network. Details about the training
can be found in [119].
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Figure 3.5: A conceptual overview and the network topology of the CNN-sim algorithm.
‘conv’ = convolutional layer, ‘FC’ = fully connected layer, ‘BN’ = batch normalization,
‘ELU’ = exponential linear unit, ‘DO’ = drop-out, ‘MaxPool’ = max-pooling.

Convolutional neural network to determine spatial focus of attention (CNN-
loc)

Vandecappelle et al. proposed in [136] a CNN to determine the spatial/direc-
tional focus of attention (e.g., left or right), solely based on the EEG. This is a
fundamentally different approach to tackle the AAD problem, which has the
advantage of not requiring the individual speech envelopes. Furthermore, it
avoids the requirement to estimate a correlation coefficient over a relatively long
decision window length as in all aforementioned algorithms, thereby avoiding
large algorithmic delays.

This CNN determines the spatial focus of attention, starting from a C × τ EEG
window. As shown in Figure 3.6, it consists of one convolutional layer and two
FC layers. The convolutional layer consists of five spatio-temporal filters, with
lags L similar to before, each outputting a one-dimensional time series of length
τ , on which a rectified linear unit activation function is applied. Afterwards, an
average pooling layer condenses each output series into a scalar, leading to a
five-dimensional vector. This vector is then used as an input for two FC layers,
the first one consisting of five neurons with a sigmoid activation function and
the output layer consisting of two neurons and a softmax layer. In total, this
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Figure 3.6: A conceptual overview and the network topology of the CNN-loc algorithm.
‘conv’ = convolutional layer, ‘FC’ = fully connected layer, ‘ReLu’ = rectified linear
unit, ‘AvgPool’ = average pooling.

network has 5 × C × L (convolutional layer) +5 × 6 (first FC layer) +2 × 6
(second FC layer) ≈ 2708 trainable parameters. The CNN can be extended
to more than two possible spatial locations (and thus competing speakers) by
adding more output neurons to the network to generalize it to a multi-class
problem, in which each class corresponds to a location or zone in which the
attended speaker is believed to be positioned.

A cross-entropy cost function is minimized using mini-batch gradient descent.
Weight decay regularization is applied, as well as a post-training selection of
the optimal model based on the validation loss. Furthermore, during training,
not only data from the subject under test (as in all other methods) but also
data from other subjects are used, as it was found in [136] that this prevents
the model from overfitting on the training data in case only a limited amount
of data of the subject under test is available. Therefore, this inclusion of data
from other subjects can be seen as a type of regularization.

Other nonlinear methods

Several other nonlinear AAD methods have been proposed since the writing of
the paper on which this chapter is based but are not included in the comparative
study. In Chapter 7, we propose a nonlinear RGC-based method to decode
the spatial focus of auditory attention as an extension on the CSP-based
method [155]. The steep uprise of DNN-based methods is also noticeable in AAD
literature. For example, Kuruvila et al. proposed in [138] a new CNN/LSTM
model on the EEG and speech spectrograms for AAD. Furthermore, various
(spatio-temporal) attention mechanisms in the DNN have been combined with
the DNN, such as in [139–141]. However, several of these methods have problems
with cross-dataset generalization or concerning a proper validation (i.e., a CV
procedure that avoids potential overfitting). This is consistent with the findings
in the next section.
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3.3 Comparative study of AAD algorithms

We compared the AAD algorithms discussed above on two publicly available
datasets (Dataset A and Dataset B) in a subject-specific manner. Both datasets
have been collected with the purpose of AAD, using a competing talker setup in
which two stories are simultaneously narrated. Details on the datasets and the
preprocessing of the EEG and audio data are described in Pop-out box 1. All
algorithms, including the deep learning methods, are re-trained from scratch on
each dataset separately.

Given a decision window length τ , the performance of each algorithm is evaluated
via the accuracy p ∈ [0, 100]%, defined as the percentage of correctly classified
decision windows. Since EEG is the superimposed activity of many different
(neural) processes, the correlation ρ between the reconstructed and attended
envelope is typically quite low (in the order of 0.05-0.2). Therefore, it is
important to use a sufficiently long decision window such that the decision
process is less affected by estimation noise in ρ due to the finite sample size. As
a result, the accuracy p generally increases for longer decision window lengths τ ,
leading to a so-called ‘p(τ)-performance curve’. These accuracies are obtained
using the CV procedure described in Pop-out box 2.

This p(τ)-performance curve thus presents a trade-off between the accuracy and
decision delay of the AAD system (a long decision length implies a slower reaction
time to a switch in attention). In Chapter 2, the MESD metric has been proposed
to resolve this trade-off in order to compare AAD algorithms more easily. The
MESD metric determines the most optimal point on the p(τ)-performance curve
in the context of attention-steered gain control by minimizing the expected time
it takes to switch the gain between two speakers in an optimized robust gain
control system. As such, it outputs a single-number time metric (the MESD
[s]) for a p(τ)-performance curve and thus removes the loss of statistical power
due to multiple-comparison corrections in statistical hypothesis testing (due to
testing for multiple decision window lengths). Furthermore, the MESD ensures
that the statistical comparison is automatically focused on the most practically
relevant points on the p(τ)-performance curve, which typically turn out to be
the ones corresponding to short decision window lengths τ < 10 s (Chapter 2).
A higher MESD corresponds to a worse AAD performance and vice versa. This
MESD metric is a theoretical metric that is not based on actual attention
switches in the data, which are also not present in the datasets used. It is
merely used here as a comparative metric, which does not necessarily reflect the
true switching time as it relies on independence assumptions in the underlying
Markov model, which can be violated in practice.
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Pop-out box 1: Experiment details

Data: The characteristics of both datasets are summarized in the
following table:
Attribute Dataset A Dataset B

Number of subjects 16 18
Amount of data
per subject

72 min 50 min

EEG system 64-channel BioSemi 64-channel BioSemi
Speakers male-male male-female
Azimuth direction sources ±90◦ ±60◦

Acoustic room condition dichotic and HRTF-filtered
in anechoic room

HRTF-filtered in anechoic, mildly,
and highly reverberant room

Speech envelope extraction: The individual speech signals are
passed through a gammatone filterbank, which roughly approximates
the spectral decomposition as performed by the human auditory system.
Per subband, the audio envelopes are extracted and their dynamic
range is compressed using a power-law operation with exponent 0.6,
after which the subband envelopes are summed into a single broadband
envelope [134].
Frequency range: For computational efficiency, the speech envelopes
as well as the EEG signals are both downsampled to fs = 64 Hz,
and bandpass filtered between 1–32 Hz [119, 136, 143]. For the linear
algorithms, this was further reduced to fs = 20 Hz and 1–9 Hz in order
to be able to reduce the number of parameters in the spatio-temporal
decoders (linear SR methods have been demonstrated not to exploit
information above 9 Hz [134]).
Hyperparameter settings: The decoder lengths and CNN kernel
lengths are set as in the original papers. For all linear methods, this is
L = 250 ms, for NN-SR L = 420 ms, for CNN-loc L = 130 ms, and for
CNN-sim L1 = 30 ms (first layer) and L2 = 10 ms (second layer). For
CCA, 1.25 s is chosen as the encoder length. The full set of 64 channels
are used in all algorithms, except for MMSE-adap-lasso, where the same
28 channels as in [44] are chosen to reduce the number of parameters
(since the decoder is estimated on much less data). The regularization
parameters are cross-validated using ten values in the range [10−6, 0].
For CCA, it turned out that retaining all PCA components for both
datasets is optimal.
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Pop-out box 2: Details on cross-validation (CV) procedure

Two-stage CV: The different algorithms are evaluated via a two-stage
CV procedure applied per subject and decision window length. The
AAD accuracy is determined via an outer leave-one-segment-out CV
(LOSO-CV) loop. Per outer fold, the optimal hyperparameter is
determined via an inner ten-fold CV loop on the training set of the
outer loop. The length of each left-out segment in the outer loop is
chosen equal to 60 s, which is split into smaller disjoint decision windows.
For example, for a decision window length of 30 s, each left-out segment
results in two decisions. Additional details per algorithm are provided
in the following table (standard CV corresponds to training on all but
one segment, testing on the left-out segment):
Method Outer LOSO-CV loop Inner 10-CV loop

MMSE-avgcorr-
ridge/lasso

standard optimization of λ (independent of τ ,
tuned based on largest value of τ)

MMSE-avgdec-
ridge/lasso

training data of each fold is split into segments of the
same size as τ . A different decoder is estimated in each
of these subsegments and the decoders are averaged
across all training folds (similar to [74])

optimization of λ (re-optimized for τ
due to the dependency of the training
procedure on τ)

CCA standard, additional LOSO-CV loop to train and test
LDA classifier

optimization of the number of canoni-
cal correlation coefficients J as input
for LDA (re-optimized for each τ)

MMSE-adap-
lasso

optimization of λ per τ and fold by taking
hyperparameter with highest accuracy on training fold

/

NN-SR standard /
CNN-loc LOSpO-CV instead of LOSO-CV, training and testing

redone for τ
/

CNN-sim ten-fold CV instead of LOSO-CV (due to computation
time), training and testing redone for τ

/

Leave-one-speaker-out CV (LOSpO-CV): When using the LOSO-
CV method, the test set always contains a speaker that is also present
in the training set. To avoid potential overfitting to speakers in the
training set for the CNN-loc algorithm, we use the LOSpO-CV method
for this algorithm, as proposed and explained in [136]. For the linear
methods, there is no difference between the LOSO-CV and LOSpO-CV
method. This is validated by performing 100 runs per subject, with in
each run another random CV split (using the same amount of folds as
for LOSpO-CV). We then tested whether the LOSpO-CV performance
significantly differs from the median of this empirical distribution (i.e.,
the median over all random splits) across all subjects. For the CCA
method, which has most degrees of freedom to overfit, the difference
between the LOSpO-CV and median random-CV accuracy is less than
1% on 20s decision windows, and a paired Wilcoxon signed-rank test
(over subjects) shows no significant difference (n = 16, p = 0.38).
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3.3.1 Statistical analysis

To statistically compare the included AAD algorithms, we adopt a linear mixed-
effects model (LMM)1 on the MESD values with the AAD algorithm as a fixed
effect and with subjects as a repeated-measure random effect. Five contrasts of
interest were set a priori according to the binary tree structure in Figure 3.1.
Algorithms that were not competitive or did not perform significantly better
than chance are excluded from the statistical analysis, which is why some
algorithms are not included in the contrasts (see Section 3.3.2). The planned
contrasts reflect the most important different features between AAD algorithms,
as shown in Figure 3.1, motivating how they are set. The significance level is
set at α = 0.05.

3.3.2 Results

Performance curves

Figure 3.7 shows the p(τ)-performance curves of the different AAD algorithms
on both datasets. For the MMSE-based decoders, it is observed that there is
barely an effect of the type of regularization and that averaging correlation
matrices (early integration) consistently outperforms averaging decoders (late
integration). Furthermore, CCA outperforms all other linear algorithms. Lastly,
on Dataset A, it is clear that decoding the spatial focus of attention using
CNN-loc substantially outperforms the SR methods for short decision windows
(< 10 s), where CNN-loc appears to be less affected by the decision window
length. However, the standard error on the mean is much higher for the CNN-
loc algorithm than for the other methods, indicating a higher inter-subject
variability.

The performances of MMSE-adap-lasso, CNN-sim, and NN-SR are not shown in
Figure 3.7 as they did not exceed the significance level or were not competitive
on either of the two datasets. For a decision window length of 10 s, the MMSE-
adap-lasso algorithm achieves an average accuracy of 52.9% with a standard
deviation of 4.3% on Dataset A and 49.8% with a standard deviation of 5.9% on
Dataset B. The CNN-sim algorithm achieves 51.7% on average with a standard
deviation of 2.3% on Dataset A (where there was no convergence for five subjects)
and 58.1% with a standard deviation of 9.2% on Dataset B. Lastly, the NN-SR
algorithm achieves on average only 52.1% (standard deviation 4.4%) on Dataset
A and 52.3% (standard deviation 3.6%) on Dataset B. As these algorithms did
not significantly outperform a random classifier or were not competitive, they

1See [161,162] for some (introductory) material/tutorials on LMMs.
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were also excluded from the statistical analysis. Furthermore, CNN-loc did not
perform well on Dataset B (i.e., 56.3% with a standard deviation of 4.5% on
10 s decision windows). As such, planned contrast I was also excluded from the
analysis for Dataset B.

Subject-specific MESD performance

A visual analysis of the per-subject MESD values (Figure 3.8) confirms the
trends based on the performance curves. These trends are also confirmed by the
statistical analysis2 using the LMM. There indeed is a significant improvement
when decoding the spatial focus of attention via a nonlinear method versus the
linear SR methods (p < 0.001 (Dataset A)). Furthermore, CCA significantly
outperforms all backward stimulus decoders (p < 0.001 (Dataset A), p < 0.001
(Dataset B)), while there is also a significant improvement when averaging
correlation matrices compared to averaging decoders (p = 0.0028 (Dataset A),
p < 0.001 (Dataset B)). There is no significant effect of the specific regularization
technique (p = 0.79 (Dataset A), p = 0.30 (Dataset B) in averaging correlation
matrices; p = 0.57 (Dataset A), p = 0.91 (Dataset B) in averaging decoders).

3.3.3 Discussion

From the results and statistical analysis, it is clear that CCA [153], which
adopts a joint forward and backward model, outperforms the other SR methods.
Furthermore, the CNN-loc method [136], which decodes the spatial focus of
attention based on the EEG alone (i.e., without using the speech stimuli),
substantially outperforms all SR methods on Dataset A at short decision window
lengths, leading to substantially lower MESDs. This relatively high performance
at short decision windows is attributed to the fact that this method avoids
correlating the decoded EEG with the speech envelope, thereby not suffering
from the noise-susceptible correlation estimation. However, the non-significant
performance of CNN-loc on Dataset B implies that alternative algorithms for
decoding the spatial focus of attention might be required to improve robustness
and generalization to different conditions. We will pursue such alternative
algorithms in Part III.

Remarkably, while the traditional linear SR methods are found to perform
well across datasets, none of the tested nonlinear (DNN) methods achieve
a competitive performance on both benchmark datasets, even though high
performances were obtained on the respective datasets used in [119,136,143].

2The two outlying subjects of the CNN-loc algorithm were removed in all comparisons on
Dataset A.
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Figure 3.7: The accuracy p (mean ± standard error on the mean across subjects)
as a function of the decision window length τ for (a) Dataset A and (b) Dataset B.
MMSE-adap-lasso, CNN-sim, and NN-SR did not perform significantly better than a
random classifier and are not depicted. CNN-loc achieved competitive results only on
Dataset A.
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Figure 3.8: The per-subject MESD values, with the median indicated with a bar, for
(a) Dataset A and (b) Dataset B. The number of data points with an MESD > 50 s
are indicated as (+x). These points were, however, included in the computation of
the medians.

This shows that these architectures do not always generalize well, even
after re-training them on a new dataset (the original authors validated the
implementations in our benchmark study to rule out potential discrepancies
in the implementation). Due to the black-box nature of these methods, it
remains unclear what causes success on one dataset and failure on another.
One possible explanation is that the design process that eventually led to the
reported network architecture was too tailored to a particular dataset (and its
size), despite proper CV. Furthermore, (D)NNs may potentially pick up subtle
patterns that may change or become absent in different experimental set-ups
due to differences in equipment, speech stimuli, or experiment protocols.

Although this lack of reproducibility across datasets seems to undermine
the practical usage of the presented nonlinear AAD methods, the current
benchmark datasets are possibly too small for these methods to draw firm
conclusions. AAD based on (D)NNs may become more robust when larger

84



3.4 Outlook and conclusion

datasets become available, containing more subjects, more EEG data per subject,
and more variation in experimental conditions. Nevertheless, the results of this
comparative study point out the risks of overfitting and overdesigning these
architectures, thereby emphasizing the importance of extensive validation with
multiple independent datasets.

3.4 Outlook and conclusion

Several studies have demonstrated that it is possible to decode the auditory
attention from a non-invasive neurorecording technique such as EEG. In our
comparative study, we have shown that most of these results are reproducible
on different datasets. However, even for the best linear (SR) method (CCA),
the accuracy at short decision windows is still too low, potentially leading to
too slow reactions of the system to shifts in auditory attention, as indicated
by a median MESD of 15 s. The results of this study have demonstrated that
an alternative strategy such as decoding the spatial focus of attention could
significantly improve performance on these short decision window lengths. In
Part III, we will develop new AAD algorithms that exploit this alternative
paradigm of decoding the spatial focus of auditory attention. Although nonlinear
(deep learning) methods are believed to be able to improve AAD performances
substantially, our study has demonstrated that the reported results obtained by
these methods are hard to replicate on multiple independent AAD datasets. A
major future challenge for AAD research is the design of an algorithm or neural
network architecture that reliably improves on short decision windows and is
reproducible on different independent datasets.

Furthermore, most presented AAD algorithms require supervised training and
are fixed during operation. To avoid cumbersome a priori training sessions for
each individual user, as well as to adapt to the time-varying statistics of the
EEG (for example, in different listening scenarios), training-free or unsupervised
adaptive AAD algorithms should be developed. While several steps have been
made in that direction [44], the results of this study show that we are still far
away from a practical solution. Therefore, in Part II, we will discuss a novel
SR-based unsupervised and time-adaptive AAD algorithm that aims to address
this need of unsupervised adaptive AAD algorithms. Such online adaptive
AAD algorithms are, moreover, paramount in the development of closed-loop
systems for neuro-steered hearing devices, in which the end-user can react to
and interact with the AAD algorithm and speech enhancement system. The
interplay between the algorithmic processes in the hearing device and the user
could enable neurofeedback effects that significantly improve the performance
of the hearing device [3] (see also Section 8.2).
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Lastly, these AAD algorithms need to be further evaluated in real-life situations,
taking various realistic listening scenarios into account, as well as on potential
hearing device users (Section 1.7.4). The individual building blocks of a
neuro-steered hearing device (Figure 1.6) need to be integrated, in which an
AAD algorithm is combined with a reliable and low-latency speaker separation
algorithm, a miniaturized EEG sensor system, and a smart gain control system
(see also Section 8.2).
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Unsupervised AAD
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4 | Unsupervised self-adaptive
stimulus reconstruction

This chapter is largely based on S. Geirnaert, T. Francart, and A.
Bertrand, "Unsupervised Self-Adaptive Auditory Attention Decoding,"
IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 10, pp.
3955-3966, 2021.

ABSTRACT | As shown in Chapter 3, stimulus decoders, which are commonly
used in AAD, are traditionally trained in a supervised manner, requiring a
dedicated training stage during which the attended speaker is known. Pre-
trained subject-independent decoders alleviate the need of having such a per-user
training stage but perform substantially worse than supervised subject-specific
decoders that are tailored to the user. This motivates the development of
a new unsupervised self-adapting training/updating procedure for a subject-
specific decoder, which iteratively improves itself on unlabeled EEG data using
its own predicted labels. This iterative updating procedure enables a self-
leveraging effect, of which we provide a mathematical analysis that reveals
the underlying mechanics. Starting from a random decoder, the proposed
unsupervised algorithm results in a decoder that outperforms a supervised
subject-independent decoder. Starting from a subject-independent decoder,
the unsupervised algorithm even closely approximates the performance of a
supervised subject-specific decoder. The developed unsupervised AAD algorithm
thus combines the two advantages of a supervised subject-specific and subject-
independent decoder: it approximates the performance of the former while
retaining the ‘plug-and-play’ character of the latter. As the proposed algorithm
can be used to automatically adapt to new users, it contributes to more practical
neuro-steered hearing devices.
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4 Unsupervised self-adaptive stimulus reconstruction

4.1 Introduction

As shown in Chapter 3, the main class of current AAD algorithms exploits
the neural envelope tracking phenomenon (Section 1.5) by reconstructing the
attended speech envelope from the recorded EEG signals via a stimulus decoder.
The reconstructed speech envelope can then be compared through the Pearson
correlation coefficient with the speech envelopes of the active speakers to
determine which speaker is the attended one.

AAD decoders/algorithms can be used in a subject-specific or subject-
independent way [74], trading practical applicability with better performance:

• A subject-specific decoder is traditionally trained in a supervised
manner, requiring a cumbersome a priori training stage in which data from
the subject under test are collected to train an AAD decoder. This popular
approach is thus less practical to implement on hearing devices. However,
it is known that this approach results in the highest AAD performance
for a given AAD algorithm [74].

• A subject-independent decoder also requires labeled data, but only of
subjects other than the subject under test, which allows to pre-train it. At
test time, this subject-independent decoder can be applied to the incoming
data of the new, unseen subject without a priori requiring information
about the attention processing of that particular subject. As such, it could
be used in a ‘plug-and-play’ fashion, pre-installed on each neuro-steered
hearing device and thus leading to a generic hearing device. However, this
practical applicability comes at the cost of a lower AAD performance, as
the decoder fails to capture the subject-specific differences in auditory
processing [74].

Moreover, both decoders remain fixed during operation, when new data of the
subject under test comes in. They do not adapt to changing conditions and
situations and thus result in suboptimal decoding results.

Except for the algorithm in [44], other AAD algorithms are supervised and
very often subject-specifically trained (Chapter 3). In [44], a dynamic AAD
algorithm is proposed, in which a decoder is estimated for each speaker per
new incoming segment of data. These decoders are then applied again to that
same segment of data to determine the auditory attention. Although some
labeled data is required to tune specific hyperparameters, this algorithm is by
design unsupervised. However, this algorithm is substantially outperformed by
all other traditional (supervised) AAD algorithms (Chapter 3).
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4.2 Supervised training of a stimulus decoder

We propose a fully unsupervised subject-specific AAD algorithm, in which a
stimulus decoder is iteratively updated on the EEG data and speech envelopes.
This iterative updating does not require ground-truth labels, i.e., knowledge
about which is the attended or unattended speaker. Instead, the model updates
itself based on its own predictions in the previous iteration. We hypothesize that
this results in a self-leveraging effect. As such, it should automatically adapt to
a new subject, integrating the two major advantages of a subject-specific and
subject-independent decoder:

1. A higher performance than a subject-independent decoder.

2. Retaining the unsupervised ‘plug-and-play’ feature of a subject-independent
decoder, thus without requiring knowledge about the labels during
training.

Furthermore, such a self-adaptive algorithm could be applied adaptively in
time. As EEG and audio data are continuously recorded, it adapts to changing
conditions and situations.

First, we revisit the traditional supervised training of a stimulus decoder in
Section 4.2. We then introduce the proposed method to update a stimulus
decoder in an unsupervised manner in Section 4.3. In Section 4.4, the data,
preprocessing, and performance evaluation are explained. In Section 4.5,
we provide a recursive mathematical model to track the iterations of the
unsupervised algorithm, with the aim to gain some insights into the mechanics
of the self-leveraging effect. The proposed method is then tested on two separate
datasets in Section 4.6. Applications, future work, and conclusions are discussed
in Section 4.7.

4.2 Supervised training of a stimulus decoder

Before explaining the newly proposed unsupervised procedure in Section 4.3, we
first revisit the traditional supervised training of a stimulus decoder for AAD.

In the classical approach1 towards AAD (see, e.g., [1, 5,74,142,163]), a linear
spatio-temporal filter dc(l), referred to as a decoder, reconstructs the attended
speech envelope sa(t) from the C-channel EEG signal xc(t) by anti-causally
integrating EEG samples over L time lags, for each EEG channel c ∈ {1, . . . , C}:

ŝa(t) =
C∑

c=1

L−1∑

l=0
dc(l)xc(t+ l), (4.1)

1A MATLAB implementation of this AAD approach can be found in [163].
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with l the time lag index and c the channel index.

Equation (4.1) can be rewritten in vector format as:

ŝa(t) = dtx(t),

where

x(t) =




x1(t)
...

x1(t+ L− 1)
x2(t)
...

xC(t+ L− 1)




∈ RCL×1

contains L lags, for each EEG channel. Similarly, the vector d ∈ RCL×1 stacks
all decoder coefficients dc(l), across all channels and time lags. The decoder d
is then found by minimizing the squared error:

d̂ = argmin
d

||sa −Xd||22 , (4.2)

with sa =
[
sa(0) · · · sa(T − 1)

]t ∈ RT×1 and X =
[
X1 · · · XC

]
∈

RT×CL a block Hankel matrix, with

Xc =




xc(0) xc(1) xc(2) · · · xc(L− 1)
xc(1) xc(2) xc(3) · · · xc(L)
xc(2) xc(3) xc(4) · · · xc(L+ 1)
...

...
...

...
xc(T − 1) 0 0 · · · 0



∈ RT×L.

Defining the sample autocorrelation matrix R̂xx ∈ RCL×CL and sample
crosscorrelation vector r̂xsa ∈ RCL×1 as:

R̂xx = 1
T

XtX and r̂xsa = 1
T

Xtsa, (4.3)

the solution of (4.2) is equal to:

d̂ = (XtX)−1Xtsa

= R̂−1
xx r̂xsa . (4.4)

This classical supervised training approach is summarized in Figure 4.1.
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EEG

Compute
autocorrelation matrix R̂xx

EEG + speech envelopes and ground-truth labels

Compute attended crosscorrelation vector r̂xsa
using ground-truth labels

Compute decoder as in (4.4)

Apply decoder as in (4.1)

d̂c(l)

EEG
xc(t)

Predicted
envelope ŝa(t)

Correlate

Speech envelope s1(t)

Correlate

Speech envelope s2(t)

max Predicted
label

Supervised
training

Testing

Figure 4.1: A conceptual overview of the traditional supervised training approach of
a stimulus decoder and its application to new test data.

Often, ridge regression is used to avoid overfitting when only a limited amount
of training data is available [1,5,142,163], such that the decoder is estimated as:

d̂ = (XtX + λI)−1Xtsa, (4.5)

where the regularization parameter λ needs to be optimized, for example,
through a CV step. When sufficient training data is available, the regularization
can be omitted [1].

In practice, a labeled training set of K segments (for example, corresponding
to different trials in an experiment) of EEG data and corresponding speech
envelopes of the competing speakers, {Xk, (s1k , s2k), yk}Kk=1, is available. Note
that in a practical system, these speech envelopes need to be extracted from
the recorded speech mixtures in a hearing device, for which various methods
exist as explained in Section 1.7.2. The labels yk ∈ {1, 2} indicate whether s1k
or s2k is the attended speech envelope. Per segment k, the attended speech
envelope sak thus corresponds to the speech envelope of the set (s1k , s2k) that
corresponds to label yk. Then (4.5) becomes:

d̂ =
(

K∑

k=1
Xt
kXk + λI

)

︸ ︷︷ ︸
R̂−1
xx

−1 K∑

k=1
Xt
ksak

︸ ︷︷ ︸
r̂xsa

(4.6)

It is crucial to realize that the estimation of the decoder in (4.6) is inherently a
supervised problem, as the ground-truth label yk needs to be known to select
the attended speech envelope sak in each segment k.
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At test time, the estimated decoder d̂ is used to reconstruct the attended
speech envelope from a new EEG segment X(test). Given two speech envelopes
s(test)

1 and s(test)
2 , corresponding to two competing speakers, the first speaker

is identified as the attended one if the sample Pearson correlation coefficient
between the reconstructed speech envelope ŝa = X(test)d̂ and the first speaker
is larger than with the second speaker, i.e.,

ρ
(
ŝa, s(test)

1

)
> ρ
(
ŝa, s(test)

2

)
, (4.7)

and vice versa. This is summarized in the ‘Testing’ part in Figure 4.1. Note
that, for the sake of an easy exposition, we assume that there are two competing
speakers, although all proposed algorithms can be generalized to more than two
competing speakers.

4.3 Unsupervised training of a stimulus decoder

Assume the availability of a training set of K segments of EEG data and speech
envelopes, {Xk, (s1k , s2k)}Kk=1, but now without knowledge of the attended
speaker, i.e., the labels yk are not available. Only the presented competing
speech envelopes (s1k , s2k) are known, of which one corresponds to the attended
speaker, while the other corresponds to the unattended one. This means that
training a decoder to reconstruct the attended speech envelope boils down to
an unsupervised problem. We thus remove the requirement of subject-specific
ground-truth labels. However, we implicitly assume that it is important for the
training of the stimulus decoder to know which envelope corresponds to the
attended speaker and which one to the unattended speaker. In other words, we
assume that the attended and unattended speakers are encoded differently in
the brain. If this would not be the case, one could simply train the decoder
based on the sum of the envelopes of both speakers. Such a training procedure
would also be unsupervised and would remove the necessity of determining
which speaker is attended during the training process. While the assumption
that both competing speakers are encoded distinctly in the brain is already
verified in the literature (e.g., see [41,42] and Section 1.5), we also confirm it
here in Section 4.5.2.

Figure 4.2 shows a conceptual overview of the proposed unsupervised training
procedure, in which a decoder is trained in an unsupervised manner by iteratively
(re)predicting the labels and updating the decoder. The key idea is thus to
replace the ground-truth labels in the supervised training stage (top part of
Figure 4.1), with the predicted labels from the testing stage (bottom part of
Figure 4.1), and iterate a few times. Below, we will explain each step of the
algorithm, while we refer to Algorithm 2 for a detailed summary.
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Initial autocorrelation matrix and crosscorrelation vector

Update autocorrelation matrix
(independent of ground truth) as in (4.8)

Update decoder based on
new autocorrelation matrix as in (4.4)

Predict labels (attended/unattended) as in (4.7)

Update crosscorrelation vector
based on predicted labels as in (4.9)

Update decoder based on
new crosscorrelation vector as in (4.4)

Figure 4.2: A conceptual overview of the iterative self-adaptive unsupervised training
procedure of a stimulus decoder.

In the first step, the autocorrelation matrix in (4.6) is estimated using the subject-
specific EEG data. This autocorrelation matrix is independent of the ground-
truth labels, which are only required for the crosscorrelation vector. It is thus
always possible to perform this update. If desired, the estimated and regularized
autocorrelation matrix can be linearly combined with an initially provided
autocorrelation matrix R(init)

xx , controlled with the user-defined hyperparameter
0 ≤ α ≤ 1 (and 1− α):

R̂xx = (1− α)
(

K∑

k=1
Xt
kXk + λI

)
+ αR(init)

xx . (4.8)

This hyperparameter can be interpreted as the amount of confidence in the
a priori available autocorrelation matrix R(init)

xx . This initial autocorrelation
matrix can be estimated on, for example, subject-independent data and can be
considered as an extra regularization term (for example, as used in Tikhonov
regularization). If no such a priori autocorrelation matrix is available, α is simply
set to 0. Using the updated autocorrelation matrix, the decoder is estimated
in combination with an initially provided crosscorrelation vector r(init)

xsa . This
crosscorrelation vector can again be estimated in a subject-independent manner
but could also be generated fully randomly. It is recommended to normalize
the initial autocorrelation matrix and crosscorrelation vector such that they

95



4 Unsupervised self-adaptive stimulus reconstruction

Algorithm 2: Unsupervised training or adaptation of a stimulus decoder
Input: A training set of K segments of EEG data and speech envelopes
{Xk, (s1k , s2k)}Kk=1; initial autocorrelation matrix R(init)

xx and crosscorrelation
vector r(init)

xsa ; regularization parameter λ and updating hyperparameters α and
β; maximal number of iterations imax
Output: A stimulus decoder d̂
1: Compute/update the autocorrelation matrix and compute an initial decoder:





R̂xx = (1− α)
(

K∑
k=1

Xt
kXk + λI

)
+ αR(init)

xx

d̂ = R̂−1
xx r(init)

xsa

2: while i ≤ imax and d̂ changes do
3: Predict the labels on the training set:

∀ k ∈ {1, . . . ,K} :
{

ŝk = Xkd̂
spredk = argmax

s1k ,s2k

(ρ(ŝk, s1k) , ρ(ŝk, s2k))

4: Update the crosscorrelation vector using the predicted labels and update
the decoder:





r̂xspred = (1− β)
K∑
k=1

Xt
kspredk + βr(init)

xsa

d̂ = R̂−1
xx r̂xspred

5: end while

have a Frobenius norm equal to the estimated autocorrelation matrix and
crosscorrelation vector, improving the interpretability of the hyperparameters.

Using the updated autocorrelation matrix (4.8) and the initial crosscorrelation
vector r(init)

xsa , we compute an initial decoder d̂ according to (4.4). This initial
decoder acts as a bootstrap to initiate the iterative procedure to update the
decoder weights. Starting from this initial decoder, the labels of the training
segments are predicted based on the maximal sample Pearson correlation
coefficient between the reconstructed envelope and the speech envelopes of the
competing speakers. These predicted labels are then used to select the attended
speech envelopes spredk in each of the K segments, which are afterwards used
to update the crosscorrelation vector. Note that it is crucial that the updating
is performed not using the reconstructed envelope from the EEG, but with the
speech envelope of one of the two competing speakers identified/predicted as the
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attended one. Again, some prior knowledge can be introduced in the updating
of the crosscorrelation vector using an initially provided crosscorrelation vector
r(init)
xsa and hyperparameter 0 ≤ β ≤ 1:

r̂xspred = (1− β)
K∑

k=1
Xt
kspredk + βr(init)

xsa . (4.9)

The updated crosscorrelation vector can then be used to re-estimate the decoder.
Multiple iterations of predicting the labels and updating the decoder can be
performed until the decoder has converged or a maximal number of iterations
has been reached. It is expected that this iterative process initiates a self-
leveraging effect, in which the decoder leverages its own predictions to improve.
In Section 4.5, we provide a mathematical analysis that explains the underlying
mechanism behind this self-leveraging effect and why it works.

Using the unsupervised updating scheme in Algorithm 2, a stimulus decoder
can be trained. In Section 4.6, we evaluate this unsupervised algorithm using
different hyperparameter settings and compare it to a supervised subject-
independent and supervised subject-specific decoder.

4.4 Experiments and evaluation metrics

In this section, we provide all information on the data (Section 4.4.1),
preprocessing and decoder settings (Section 4.4.2), and evaluation procedure
and metrics (Section 4.4.3) required to replicate and reproduce all experiments
and results. All experiments are performed in MATLAB.

4.4.1 AAD datasets

We validate the proposed unsupervised AAD algorithm on two separate datasets:
Dataset A and Dataset B. The first one (Dataset A) consists of EEG recordings
of 16 normal-hearing subjects, attending to one out of two competing speakers [1].
These competing speakers are located at ±90◦ along the azimuth direction. Per
subject, 72 min of EEG and audio data are available. This dataset is available
online [132].

The second dataset (Dataset B) consists of EEG recordings of 18 normal-
hearing subjects, attending to one out of two competing speakers, located at
±60◦ along the azimuth direction [2]. Per subject, 50 min of EEG and audio
data are available. Different acoustic room settings are used: anechoic, mildly
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reverberant, and highly reverberant. This dataset is available online as well [133].
Both datasets are recorded using a 64-channel BioSemi ActiveTwo system.

4.4.2 Preprocessing and decoder settings

The preprocessing of the EEG and audio data is very similar to [1]. The audio
signals are first filtered using a gammatone filterbank. From each subband
signal, the envelope is extracted using a power-law operation with exponent 0.6,
after which one final envelope is computed by summing the different subband
envelopes. Both the EEG data and speech envelopes are filtered between
1–9 Hz [134] and downsampled to 20 Hz. Note that we here assume that the
clean speech envelopes are readily available and need not be extracted from the
microphone recordings. For Dataset B, the 50 s segments are normalized such
that they have a Frobenius norm equal to one across all channels.

A maximum of imax = 10 iterations of predicting the labels and updating the
decoder is used, which in practice showed to be sufficient (see also Section 4.6).

In the design of the stimulus decoder, L = 250 ms is chosen [74], such
that the filter spans a range of 0–250 ms post-stimulus. Furthermore, the
regularization parameter λ in (4.5), (4.6), and Algorithm 2 is analytically
determined using [164], which is the recommended state-of-the-art method to
estimate this regularization parameter [38]. Given data matrix X ∈ RT×CL
and sample autocorrelation matrix S = 1

T XtX ∈ Rp×p, the proposed shrinkage
estimator Ŝ in [164] of the autocorrelation matrix becomes [165]:

Ŝ = (1− η)S + η
Tr (S)
p

I, (4.10)

with

η = min




T∑
t=1
||xtxt

t − S||2F

T 2
(
Tr (StS)− Tr(S)2

p

) , 1


 . (4.11)

Note that in our case, p = CL, and we ignore the normalization of the
autocorrelation matrix (and crosscorrelation vector) by T . The shrinkage
formula in (4.10) can easily be rewritten in the form of (4.5), (4.6) upon an
irrelevant scaling, in which case λ is set as:

λ = η

1− η
Tr
(
XTX

)

CL
.
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In [164], they show that (4.10) and (4.11) lead to a consistent estimator that
is asymptotically optimal with respect to a quadratic loss function with the
underlying unknown autocorrelation matrix.

4.4.3 Cross-validation and evaluation

For the supervised subject-specific decoder, a random ten-fold CV scheme is used
to train and test the decoders. The supervised subject-independent decoders
are evaluated using a leave-one-subject-out CV (LOSuO-CV) scheme where
a decoder is trained on the data of all other subjects and tested on the left-
out subject. The proposed unsupervised subject-specific decoder is tested in a
random ten-fold CV manner as well, where the updating happens on the training
set (without knowledge of the labels) and the testing on the left-out data. The
partitioning of the data is performed on segments of 60 s for Dataset A and
50 s for Dataset B. Per subject, the continuous recordings are thus first split
into these segments and then randomly distributed over a training and test set.
At test time, the left-out 60/50 s segments are split into shorter sub-segments
of length τ , from hereon referred to as ‘decision windows’. The accuracy is
then defined as the ratio of correctly decoded decision windows across all test
folds. These shorter decision windows are only used in the test folds in order
to evaluate the trade-off between the AAD accuracy and the decision window
length (longer decision windows provide more accurate correlation coefficients,
yielding higher AAD accuracies at the cost of slower decision-making; see Part I).
However, the prediction and updating in Algorithm 2 are always performed
on the longer 60/50 s segments, in order to maximize the accuracy of the
unsupervised training labels.

To resolve the aforementioned trade-off between accuracy and decision window
length, we use the MESD performance metric for AAD as proposed in Chapter 2.
The MESD represents the theoretical expected time it takes to switch the gain
in an optimal attention-steered gain control system, following a switch in
auditory attention. Such a gain control system is modeled using a Markov
chain model, where the time it takes to step from one state (i.e., gain level)
to another is represented by the AAD decision window length and where the
step size between gain levels is optimized to ensure stable operation within
a pre-defined comfort region in the presence of AAD errors. The ESD can
then be computed by quantifying the expected number of steps required to
switch to the pre-defined comfort region associated with the other speaker. This
gain control system/Markov chain model is optimized across decision window
lengths to minimize the time it takes to switch the gain from one source to
another while assuring a stable operation within the pre-defined comfort region
when the attention is sustained. Note that this metric is computed based on
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4 Unsupervised self-adaptive stimulus reconstruction

a stochastic model of a gain control system and is not evaluated using actual
switches in attention. However, it allows to easily and statistically compare
different decoders across different decision window lengths based on a single
(practically relevant) metric. As such, it resolves the aforementioned accuracy-
versus-decision-time trade-off. The underlying mathematical principles and
definition of this metric can be found in Chapter 2. To compute the MESD, we
used the publicly available MESD toolbox from [145].

4.5 Unsupervised updating explained:
a mathematical model

Before extensively testing Algorithm 2 on the different datasets in Section 4.6,
we attempt to demystify and explain the hypothesized self-leveraging mechanism
through a mathematical analysis of the recursion induced by the algorithm.

4.5.1 Mathematical model

Assume that at iteration i < imax of Algorithm 2, we obtain a decoder with
an (unknown) AAD test accuracy of pi ∈ [0, 100]%. This means that there
is a probability of pi that the reconstructed envelope using this decoder will
have a higher correlation with the attended envelope than with the unattended
envelope. Correspondingly, there is a 100%−pi probability that the unattended
envelope will show the highest correlation. Assume for simplicity that α = 0
and β = 0. Due to the linearity of the computation of the crosscorrelation
vector (see (4.3)), the updated crosscorrelation vector will then be, on average,
equal to:

r̂xspred,i+1 = pir̂xsa + (1− pi)r̂xsu , (4.12)

with r̂xsa the crosscorrelation vector using all attended envelopes and r̂xsu the
crosscorrelation vector using all unattended envelopes. Similarly, and again
due to the linearity in the computations, the corresponding updated decoder
becomes:

d̂i+1 = pid̂a + (1− pi)d̂u, (4.13)

with d̂a the decoder trained with all attended speech envelopes (which would
correspond to the supervised subject-specific decoder with accuracy pa) and d̂u
the unattended decoder that would be trained with all unattended speech
envelopes. This unattended decoder has an accuracy equal to pu on the
unattended labels and thus 100%− pu on the attended labels. As a result, the
reconstructed envelope using this updated decoder is a linear combination of
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the reconstructed envelope obtained using the (supervised) attended decoder
(ŝa) and the (supervised) unattended decoder (ŝu):

ŝpred,i+1 = piŝa + (1− pi)ŝu. (4.14)

The goal is now to find the AAD accuracy pi+1 of the updated decoder
d̂i+1 (4.13) in iteration i + 1. We will propose a mathematical model for
the function pi+1 = φ(pi), which determines the accuracy pi+1 of the updated
decoder as a function of the accuracy pi of the previous decoder. If pi+1 > pi,
this implies a self-leveraging effect in which the accuracy improves from one
iteration to the next. Given that the speech envelope that exhibits the highest
Pearson correlation coefficient with the reconstructed envelope is identified as
the attended speaker, this implies that:

pi+1 = φ(pi) = P (ρ(ŝpred,i+1, sa) > ρ(ŝpred,i+1, su)) , (4.15)

with sa and su the speech envelopes of the attended and unattended speaker.
Using (4.14) and the definition of the Pearson correlation coefficient of two
random variables X and Y :

ρ(X,Y ) = E{(X − µX) (Y − µY )}
σXσY

,

with the mean µX/Y and standard deviation σX/Y , (4.15) becomes:

φ(pi) = P (piσŝaρ(ŝa, sa) + (1− pi)σŝuρ(ŝu, sa)

> piσŝaρ(ŝa, su) + (1− pi)σŝuρ(ŝu, su))

= P (piσŝa (ρ(ŝa, sa)− ρ(ŝa, su))

> (1− pi)σŝu (ρ(ŝu, su)− ρ(ŝu, sa))).

(4.16)

To simplify this expression, and without loss of generality2, we assume that both
speech envelopes have a similar energy content such that it is safe to assume that,
on average, σŝa = σŝu . Furthermore, ρ(ŝa, sa) , ρ(ŝa, su) , ρ(ŝu, su) , and ρ(ŝu, sa)
are independent of pi and can be considered as random variables ρaa, ρau, ρuu,
and ρua. These random variables represent the correlation coefficients between
the reconstructed envelopes using the attended/unattended decoders and the
speech envelopes of the attended/unattended speakers, computed over a pre-
defined window length. As such, (4.16) becomes:

φ(pi) = P

(
ρaa − ρau >

1− pi
pi

(ρuu − ρua)
)
. (4.17)

2This can always be obtained by normalizing the (reconstructed) envelopes.
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4 Unsupervised self-adaptive stimulus reconstruction

Define now the new random variables R1 = ρaa − ρau ∼ N (µ1, σ
2) and R2 =

ρuu − ρua ∼ N (µ2, σ
2). We assume that these random variables are normally

distributed3 with known mean and equal standard deviation. These means
and standard deviation can be derived a priori from the supervised subject-
specific decoders and experiments (note that these are not available in the
unsupervised case, yet for analysis and validation purposes, we can use a
supervised setting to estimate these). R1 represents the difference between the
correlation coefficients of both competing speakers when using the (supervised)
attended decoder, while R2 would be used when making AAD decisions based
on the (supervised) unattended decoder. As the standard deviation of R1 and
R2 is mostly determined by the noise, which is the same for the attended
and unattended decoder, we can assume that they have the same standard
deviation σ. This standard deviation can be estimated across the mean-centered
R̃1 = R1 − µ1 and R̃2 = R2 − µ2 variables.

Finally, we can define Z = R1 − 1−pi
pi

R2, which is again normally distributed:

Z ∼ N
(
µz(pi), σz(pi)2) ,

with

µz(pi) = µ1 −
1− pi
pi

µ2 and σz(pi) = σ

√
1 + (1− pi)2

p2
i

,

assuming that R1 and R2 are uncorrelated4. Equation (4.17) then becomes
equal to P (Z > 0), or equivalently:

φ(pi) = 1
σz(pi)

√
2π

+∞∫

0

e
− 1

2

(
x−µz(pi)
σz(pi)

)2

dx. (4.18)

By numerically evaluating (4.18) for pi ∈ [0, 100]%, we have modeled the AAD
accuracy pi+1 in iteration i+1 as a function of the AAD accuracy pi in iteration
i. Note that pi and pi+1 = φ(pi) refer here to the test accuracy, as the model
parameters will be computed from the correlation coefficients resulting from
applying the subject-specific attended/unattended decoders to left-out test data.

Figure 4.3 shows the modeled curve φ(pi) where µ1, µ2, and σ are estimated
from Dataset A. The modeling is performed per subject based on the correlation
coefficients of the attended and unattended decoders tested on 60 s decision

3For none of the 16 subjects in Dataset A, the Kolmogorov-Smirnov test indicates a
deviation from a normal distribution, which provides empirical support for this assumption,
in addition to the validation of the final model that we provide in Section 4.5.1.

4For none of the 16 subjects in Dataset A, there is a significant correlation between R1
and R2, which supports this assumption, in addition to the validation of the final model in
Section 4.5.1.
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Figure 4.3: The modeled updating curve, averaged over all subjects of Dataset A,
shows the accuracy φ(pi) after updating, starting from a decoder with accuracy pi,
and closely corresponds to the simulated curve. As a reference, the identity line, where
the updated accuracy is equal to the initial accuracy, is added.

windows with ten-fold CV. The modeled curves are then averaged across all
subjects to obtain one ‘universal’ updating curve in Figure 4.3.

Verification of the φ(pi) model

The updating curve in Figure 4.3 can be verified using simulations. Consider
an oracle that can produce any mixture (pi, 100%− pi) of correct and incorrect
labels. Using this oracle, we can perform a sweep of pi values and compute
a decoder based on this particular ratio of correct and incorrect labels. For
each pi, the corresponding decoder can be applied to the test set to evaluate
pi+1, which should be approximately equal to φ(pi) if the model is correct. The
simulated curve shown in Figure 4.3 is generated using random ten-fold CV,
repeated five times per subject, and averaged over subjects, folds, and runs. As
the simulated curve closely resembles the theoretical curve, we can confirm that
the assumptions are sensible and that the theoretical updating curve (4.18) is
valid and useful for interpretation and analysis.
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4 Unsupervised self-adaptive stimulus reconstruction

4.5.2 Explaining the updating

Analysis of the updating curve

In Figure 4.3, five points/regions are indicated, which are discussed below:

• Point 1© corresponds to pi = p∗, i.e., the cross-over point. For initial
accuracy p∗, the updated accuracy remains the same, i.e., φ(p∗) = p∗.
This cross-over point thus corresponds to the fixed/invariant point of
φ(pi).

• Point 2© corresponds to pi = 0%, i.e., the decoder is trained using only
the unattended ground-truth labels and is thus equal to d̂u. The updated
accuracy then corresponds to 100%−pu, as the unattended decoder is used
to predict attended labels. The unattended decoder generally performs
worse than the attended decoder, obtaining accuracies below 100%, such
that φ(0%) > 0%, ergo, an increase in accuracy. This, furthermore, also
confirms that unattended speech envelope is encoded differently in the
brain than the attended speech envelope.

• Region 3© corresponds to 0% ≤ pi < p∗. In this region, the accuracy
increases after updating, i.e., φ(pi) > pi. Even when using a majority of
unattended speech envelopes to train the attended decoder, the accuracy
increases. A possible explanation is that the resulting correlation vector
still conveys information about which channels and which time lags are
best suited to decode speech from the EEG, albeit unattended speech.
It seems that there is still information to gain from unattended speech
to compensate for the limited amount of attended speech. However,
when pi increases, the increase in accuracy in general decreases (i.e., the
distance to the identity line decreases), possibly because there is less and
less information to gain from the unattended speech. Furthermore, it is
expected that the crosscorrelation of the EEG with the attended speech
envelopes (r̂xsa) is on average larger than of the EEG with the unattended
speech (r̂xsu). This reduces the relative weight of the unattended
crosscorrelation vector (for example, see (4.12)) and could make the
attended crosscorrelation vector more prominent in the estimated one,
even when more unattended labels are used, enabling the self-leveraging
effect.

• Point 4© corresponds to pi = 100%, i.e., the decoder corresponds to the
supervised subject-specific decoder from Figure 4.5a, with accuracy pa. As
even the attended decoder is not perfect, φ(100%) < 100%, which results
in a decrease in accuracy. This could be due to modeling errors (limited
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capacity of a linear model), the low SNR of the stimulus-response in the
EEG, and a small amount of incorrect ground-truth labels, for example,
due to the subject’s attention wandering off to the wrong speaker.

• Region 5© corresponds to p∗ < pi < 100%, where the accuracy decreases
after updating, i.e., φ(pi) < pi. The presence of unattended labels does
not add information as in region 3©, suffering from the same limitations
as in point 4©.

Lastly, because of the linearity of (4.3), the point pi = 50% reflects the case
where one would train the decoder based on the sum of both speech envelopes
(i.e., across attended and unattended speaker). As discussed in Section 4.3,
we implicitly assume that the attended and unattended speech envelopes are
encoded differently in the brain. If not, the unsupervised training of a decoder
based on the sum of the speech envelopes would result in a similar accuracy as
the proposed unsupervised training method. The updating curve in Figure 4.3,
however, shows that φ(50%) < φ(p∗). This indicates that such an unsupervised
decoder trained on the sum of the speech envelopes performs worse than the
proposed unsupervised method. As such, it confirms the assumption that both
speech envelopes are encoded distinctly in the brain and that the inclusion of
the unattended envelope misdirects the computation of the crosscorrelation
vector in (4.3).

A fixed-point iteration algorithm

Using the theoretical model in Figure 4.3, we can interpret the unsupervised
AAD algorithm in Algorithm 2 as a fixed-point iteration pi+1 = φ(pi) on this
curve. Before analyzing the uniqueness and convergence properties based on the
model (4.18), we first provide an intuitive explanation of why there could only
be one fixed point p∗ on the updating curve. First of all, it is safe to assume
that φ(0%) > 0%, as the unattended decoder is never perfect. Furthermore, it
is very unlikely that regions 3© and 5© in Figure 4.3 would alternate, as this
would mean that, when using more attended labels to train the decoder, there
is an increase-decrease-increase of AAD accuracy (or the other way around)
with respect to the initial accuracy. This implies that there is a unique fixed
point of the theoretical model. We show in Appendices 4.A and 4.B that, based
on the model (4.18), the existence, uniqueness, and convergence of/to the fixed
point are indeed mathematically guaranteed when three reasonable conditions
on the accuracy pa of the (supervised) attended decoder and the accuracy pu of
the (supervised) unattended decoder (on the unattended speech) are satisfied.
Furthermore, we also demonstrate in Appendix 4.B that these conditions are
satisfied for all subjects in both datasets.
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Figure 4.4: The realized fixed-point iteration paths closely follow the theoretical
model (for three representative subjects (a), (b), (c) from Dataset A). The predicted
fixed point p̂∗ from the theoretical model accurately predicts the actual fixed point p∗.

These fixed-point iteration properties are also intuitively apparent from
Figure 4.3 and hold in every example we have encountered in practice so
far. This means that we could initialize the updating algorithm with any
decoder, as we would always arrive at (or very close to) the fixed point p∗5.
As a result, it explains why the updating procedure is possible starting from
a random decoder. Figure 4.4 shows how the fixed-point paths (on average
across all folds) follow the theoretical model for three representative subjects of
Dataset A, starting from a random decoder.

5The fixed point to which there is convergence will, in practice, slightly differ across runs,
initializations, etc. The model in Figure 4.3 should be interpreted in a probabilistic manner,
as it represents an average across runs, initializations, etc.
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The fixed point p̂∗ based on the theoretical model (where the means and
standard deviation in (4.18) are computed per subject individually) should thus
give a good approximation of the unsupervised AAD accuracy p∗. Across all
16 subjects of Dataset A, on 60 s decision windows, the mean absolute error
between the predicted and actual unsupervised AAD accuracy is 3.45%. We
can thus accurately predict how well the unsupervised updating will perform
by computing the fixed point of (4.18), where the parameters µ1, µ2, and σ
in (4.18) can be easily computed from the corresponding supervised subject-
specific decoders. Furthermore, as mentioned above, the model (4.18) also
allows showing convergence to this fixed point when three reasonable conditions
are satisfied (see Appendices 4.A and 4.B).

4.6 Results and discussion

In this section, we extensively validate the unsupervised algorithm on the two
datasets and compare it with a supervised subject-independent and supervised
subject-specific decoder.

4.6.1 Random initialization

We first evaluate the proposed unsupervised algorithm using a random
initialization and without using any prior knowledge. As such, in Algorithm 2, we
set α = 0 and β = 0. The crosscorrelation vector r(init)

xsa is initialized at random
from a multivariate uniform distribution. Figure 4.5 shows for both datasets
the AAD accuracy as a function of decision window length and Figure 4.6
the MESD values per subject for the supervised subject-specific decoder, the
subject-independent decoder, and the proposed unsupervised subject-specific
decoder (with random initialization). The significance level in Figure 4.5 is
computed using the inverse binomial distribution as in [74].

As mentioned in Section 4.1, it is clear that a supervised subject-specific decoder
outperforms a subject-independent decoder on both datasets (Figures 4.5
and 4.6). A Wilcoxon signed-rank test between the MESD values, with a
Bonferroni-Holm correction for multiple comparisons, confirms this (Dataset
A: n = 16, p = 0.0022, Dataset B: n = 18, p = 0.0030). On both datasets,
the proposed unsupervised subject-specific decoder with random initialization
outperforms the subject-independent decoder as well (although less clearly on
Dataset B). Furthermore, it approximates the performance of the supervised
subject-specific decoder, especially for the shorter decision window lengths.
However, it does so without requiring ground-truth labels and thus retains the
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Figure 4.5: (a) The unsupervised subject-specific decoder, with both types of
initialization (random: rand-init, subject-independent information: SI-info) clearly
outperforms a subject-independent decoder on Dataset A, while approximating the
performance of a supervised subject-specific decoder especially on short decision
windows (mean ± standard error of the mean (shading) across subjects). (b) The
same trend occurs for Dataset B, although the unsupervised subject-specific decoder
with random initialization outperforms the subject-independent decoder less apparent.
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Figure 4.6: (a) The per-subject MESD values (each subject = one dot) of Dataset
A, with the median indicated with the black bar, confirm that the unsupervised
subject-specific decoder outperforms the subject-independent decoder. The number of
outlying values that fell off the plot is indicated with (+x) (outliers are still included
in the quantitative analysis). ‘SI’ = subject-independent (b) The same for Dataset B.

‘plug-and-play’ feature of the subject-independent decoder. A Wilcoxon signed-
rank test between the MESD values, again with a Bonferroni-Holm correction,
shows a significant difference between the unsupervised subject-specific decoder
with random initialization and the supervised subject-independent decoder on
Dataset A (n = 16, p = 0.0458), but not on Dataset B (n = 18, p = 0.5862).
Lastly, there is a significant difference between the supervised and unsupervised
subject-specific decoder with random initialization (Dataset A: n = 16, p =
0.0034, Dataset B: n = 18, p = 0.0010).

Note that this last result is not per se a negative result: it is not expected that
an unsupervised subject-specific decoder, updated starting from a completely
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random decoder, performs as well as the supervised version. The most important
result is that the proposed unsupervised algorithm outperforms a subject-
independent decoder, even when starting from a random decoder and while
not requiring subject-specific ground-truth labels as well. Furthermore, such
an unsupervised algorithm could be implemented on a generic hearing device,
which trains and adapts itself from scratch to a new user.

Convergence plots

Figure 4.7 shows the AAD accuracy as a function of the iteration index for
all subjects of Dataset A. Computing a decoder with the subject-specific
autocorrelation matrix, but with a random crosscorrelation vector, seems not to
perform better than chance (iteration 0). Surprisingly, even after one iteration
of predicting the labels using the decoder after iteration 0, which performs on
chance level, and updating the crosscorrelation vector, a decoder is obtained
that on average performs with ≈ 75% accuracy on 60 s decision windows (see
also Figure 4.3). This implies that even using a random mix of attended and
unattended labels results in a decoder that performs much better than chance.
In the following iterations, the decoder keeps improving, settling after 4-5
iterations. This matches the fixed-point iteration interpretation of Section 4.5.2
and Figures 4.3 and 4.4, explaining the self-leveraging mechanism.

4.6.2 Subject-independent initialization/information

To use the information in the subject-independent decoder to our advantage,
we can put α 6= 0 and β 6= 0 in Algorithm 2. By adding subject-independent
information to the estimation of both the autocorrelation matrix and the
crosscorrelation vector, we can further improve the updating behavior when
starting from a random initialization. Especially in the estimation of the
crosscorrelation vector, the subject-independent crosscorrelation vector, which
is estimated using ground-truth labels, can compensate for prediction errors.

The initial autocorrelation matrix R(init)
xx and crosscorrelation vector r(init)

xsa

are determined using the (supervised) information of all other subjects. The
hyperparameters α and β are determined empirically. For Dataset A, α = 0 is
chosen, i.e., no subject-independent information is used in the autocorrelation
estimation. Furthermore, β = 1

3 is chosen, i.e., the subject-independent
crosscorrelation is half as important as the computed subject-specific one.

The results on Dataset A of this unsupervised subject-specific decoder
using subject-independent information are shown in Figures 4.5a and 4.6a.
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Figure 4.7: The convergence plots for all subjects of Dataset A using a random
initialization, on 60 s decision windows, show that the AAD accuracy converges to the
final unsupervised subject-specific accuracy after 4-5 iterations.

Remarkably, the unsupervised procedure here results in a decoder that very
closely approximates the supervised subject-specific decoder, without requiring
subject-specific ground-truth labels. Based on the MESD values, there is no
significant difference to be found between the supervised and unsupervised
subject-specific decoder with subject-independent information (Wilcoxon signed-
rank test with Bonferroni-Holm correction: n = 16, p = 0.3259). For six
subjects, the unsupervised decoder performs even better than the supervised
subject-specific one (see also Figure 4.6a). Furthermore, note that using the
subject-independent information with respect to a random initialization and no
further information not only fixes poor updating results for some of the outlying
subjects but also improves on most other subjects (12 out of 16).

For Dataset B, α = 0.5 and β = 0.5, i.e., an equal weight to the subject-specific
and subject-independent information, turn out to be good choices. Given that
the unsupervised subject-specific decoder with random initialization performs
worse than in Dataset A, it is not unexpected that a larger weight β of the
subject-independent information is required to improve on the unsupervised
procedure.

Figures 4.5b and 4.6b show the results on Dataset B of the unsupervised
procedure with subject-independent information and with the aforementioned
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choices of the hyperparameters. The usage of subject-independent information
results here in an even larger improvement over the random initialization (e.g.,
both in MESD, for 15 out of 18 subjects, as spread around the median in
Figure 4.6b) and again closely approximates the supervised subject-specific
performance, without requiring subject-specific ground-truth labels. However,
based on the MESD values in Figure 4.6b, there is still a significant difference to
be found between the supervised and unsupervised subject-specific performance
(Wilcoxon signed-rank test with Bonferroni-Holm correction: n = 18, p =
0.0498), albeit very close to the significance level of 0.05. This indicates again
that the unsupervised procedure with subject-independent information closely
approximates the supervised subject-specific performance without ground-truth
labels. Furthermore, the unsupervised decoder has a higher performance for
four subjects (out of 18) relative to the supervised subject-specific decoder.
Lastly, there now is a clear significant difference between the MESD values of
the unsupervised procedure and the subject-independent decoder (Wilcoxon
signed-rank test with Bonferroni-Holm correction: n = 18, p = 0.0030).

Using some information about other subjects, we can thus adapt a stimulus
decoder that performs almost as well as a supervised subject-specific decoder,
but without requiring ground-truth information about the attended speaker
during the training procedure.

Convergence plots

Figure 4.8 shows the AAD accuracy as a function of the different steps of
Algorithm 2 for all subjects of Dataset A. It appears that fully replacing (i.e.,
α = 0) the autocorrelation matrix in the subject-independent decoder with the
subject-specific information, which is a fully unsupervised step, already results
in a substantial increase in accuracy, despite the resulting mismatch between the
auto- and crosscorrelation matrix/vector (‘after autocorrelation update’ versus
‘subj.-indep.’ in Figure 4.8). Further updating the crosscorrelation vector with
the predicted labels while using subject-independent information with β = 1

3
results in a self-leveraging effect, leading to a further increase in accuracy, which
converges after a few iterations similarly to Figure 4.7.
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Figure 4.8: The convergence plots for all subjects of Dataset A using subject-
independent information, on 60 s decision windows, show that mainly the
autocorrelation update and the first iteration result in a substantial increase in
accuracy.

4.7 Outlook and conclusion

4.7.1 Applications and future work

The proposed unsupervised self-adaptive algorithm paves the way for further
extensions and applications. We presented a batch-version of the algorithm,
i.e., the updating is performed on a large dataset of EEG and audio data. This
enables the ‘plug-and-play’ capabilities of a stimulus decoder for a new hearing
device user. However, Algorithm 2 could be extended to a time-adaptive version,
tailored towards the application of neuro-steered hearing devices, where EEG
and audio data are continuously recorded. As a result, the stimulus decoder
could automatically update in an unsupervised manner when new data comes
in and adapt to changing conditions and situations (e.g., non-stationarities in
neural activity, changing electrode-skin contact impedances). Such an efficient,
adaptive version of the unsupervised procedure is developed in Chapter 5.

The deployed SR approach performs worse on short decision window lengths
(Figure 4.5), making this algorithm less suitable for real-time decoding of the
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auditory attention (Part I). However, the proposed unsupervised updating
of a stimulus decoder can still be used on a longer time scale to generate
reliable labels to train another, potentially more accurate, algorithm on short
decision windows (for example, the algorithms in Part III). Lastly, the adaptive
implementation of the unsupervised procedure also potentially enables and
improves the success of neurofeedback effects in a closed-loop implementation
(see also Section 8.2).

4.7.2 Conclusion

We have shown that it is possible to train a subject-specific stimulus decoder
for AAD using an unsupervised procedure, i.e., without requiring information
about which speaker is the attended or unattended one. Training such a decoder
on the data of a particular subject from scratch, even starting from a random
decoder and without any prior knowledge, leads to a decoder that outperforms a
subject-independent decoder. Unsupervised adaptation of a subject-independent
decoder, trained on other subjects, to a new subject even leads to a decoder that
closely approximates the performance of a supervised subject-specific decoder.
The proposed updating algorithm thus combines the two main advantages of a
supervised subject-specific and subject-independent decoder:

1. It substantially outperforms a subject-independent decoder, approximating
the performance of a supervised subject-specific decoder.

2. It can be used in a ‘plug-and-play’ fashion, without requiring ground-
truth labels and potentially automatically adapting to changing conditions
without external intervention.

Using a mathematical model for the updating procedure, the unsupervised
algorithm can be interpreted as a fixed-point algorithm. This interpretation
explains why there is a self-leveraging effect, even when starting from a random
decoder. Furthermore, using this mathematical model, we are able to accurately
predict the accuracy of the unsupervised decoder starting from the results of
the supervised subject-specific decoder.

The proposed unsupervised self-adaptive algorithm can be used in an online
and adaptive manner in a practical neuro-steered hearing device, allowing
the decoder to automatically adapt to the non-stationary brain and changing
environments and conditions (see Chapter 5). Furthermore, it avoids having
a cumbersome a priori training stage for each new hearing device user, as it
automatically adapts to the new user. Lastly, the developed method potentially
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enables stronger neurofeedback effects when using a closed-loop system, which
is paramount for the successful application of AAD (see Section 8.2).
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4 Unsupervised self-adaptive stimulus reconstruction

Appendices

In the appendices, we show convergence to a unique fixed point of the fixed-
point iteration on the updating model (4.18). We hypothesize that under three
reasonable conditions on the accuracies of the attended and unattended decoder,
there exists a unique fixed point p∗ to which the fixed-point iteration pi+1 = φ(pi)
converges, starting from any (possibly random) decoder. In Section 4.A, we first
show that there always exists such a fixed point, while in Section 4.B, we check
the uniqueness of and convergence to this fixed point under the hypothesized
conditions.

4.A Existence

Consider the following fixed-point theorem, also known as Brouwer’s fixed-point
theorem [166]:

Theorem 1 (Brouwer’s fixed point theorem [166])

Any continuous self map of a nonempty compact convex subset of a
Euclidean space has a fixed point.

As the function φ(pi) : [0, 100]%→ [0, 100]% in (4.18) is a continuous function
that maps its domain onto itself and [0, 1] is a closed (thus, compact) convex
subset of R, Brouwer’s fixed point theorem assures that there exists at least one
fixed point.

4.B Uniqueness and convergence

We evaluate the model in (4.18) in a relevant range of the parameters µ1, µ2,
and σ, obeying three reasonable conditions, to show the convergence to a unique
fixed point.

Three conditions for convergence

Consider the supervised subject-specific attended decoder d̂a with accuracy pa
(on the attended labels) and supervised subject-specific unattended decoder d̂u
with accuracy pu (on the unattended labels). We then a priori postulate the
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following three intuitive and reasonable conditions on the accuracies pa and pu
(which will turn out to be satisfied for all subjects in both datasets):

• pa−pu > 5%, i.e., the attended decoder needs to perform 5% better (on the
attended labels) than the unattended decoder (on the unattended labels).
Given that the attended speech envelope is typically better represented
in the EEG, we indeed expect a difference in performance between both
decoders. Moreover, this condition can be linked to the expectation that
the crosscorrelation between the EEG and attended speech envelope is
on average larger than with the unattended speech envelope, serving as a
possible explanation for the self-leveraging effect (Section 4.5.2).

• pu < 85%, i.e., the unattended decoder may not perform better than 85%
(on the unattended labels). If the unattended decoder performs too well,
then, again, the self-leveraging effect may not be present for the same
reason as mentioned in the previous condition.

• pa > 100%−pu, i.e., the attended decoder is better at predicting attended
labels than the unattended decoder. This assures that the starting point
of the model curve φ(0%) = 100%− pu (for example, see Figure 4.3) is
below the end point φ(100%) = pa.

In the following sections, we will use the model in (4.18) to show that there is
convergence to a unique fixed point of the model when these three conditions are
satisfied. However, it is noted that these postulated conditions are conservative
in the mathematical sense, i.e., they are ‘sufficient’ but not ‘necessary’ conditions.
When they are not satisfied, there can still be convergence to a unique fixed
point.

Moreover, the three conditions are also intuitive and very reasonable from a
practical point of view, as they are satisfied for all subjects in both datasets on
50/60 s decision windows (i.e., the length of the segments on which the updating
is performed): the minimum across all subjects of pa − pu = 8.3% > 5%, the
maximum across all subjects of pu = 76.7% < 85%, and the minimum across all
subjects of pa + pu = 124% > 100%.

Convergence to a unique fixed point

Consider the following fixed-point theorem that provides sufficient conditions for
convergence to a unique fixed point of the fixed-point iteration pi+1 = φ(pi) [167]:
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Theorem 2 [167]

Let φ be a continuous function on [a, b], such that φ(pi) ∈ [a, b],∀ pi ∈
[a, b], and suppose that φ′ exists ∀pi ∈ [a, b] and that a constant 0 < α < 1
exists such that:

|φ′(pi)| ≤ α,∀ pi ∈ [a, b],

then there is exactly one fixed point p∗ ∈ [a, b] and the fixed-point
iteration pi+1 = φ(pi) will converge to this unique fixed point in [a, b].

We now evaluate the model φ(pi) in (4.18) and its derivative φ′(pi) to show
convergence to a unique fixed point based on Theorem 2 for the case where the
conditions in Section 4.B are satisfied.

The derivative φ′(pi) of the model in (4.18) can be computed by hand or by
using any symbolic math software and is equal to:

φ′(pi) = piσz(pi)2µ2 + (1− pi)σ2µz(pi)√
2πp3

iσz(pi)3
e
− 1

2

(
µz(pi)
σz(pi)

)2

. (4.19)

To evaluate (4.18) and its derivative (4.19), we take 300 equidistant samples
of µ1 ∈ [−2, 2], 300 equidistant samples of µ2 ∈ [−2, 2], and 100 equidistant
samples of σ ∈ ]0, 4]. These intervals contain the complete range of parameters
concerning the difference in correlation coefficients R1 and R2. From this
parameter range, we select all combinations of (µ1, µ2, σ) for which the three
conditions of Section 4.B are satisfied. The connection between pa and pu (as
used in the three conditions) and the model parameters (µ1, µ2, σ) is given by:

pa = P (R1 > 0) = 1
σ
√

2π

+∞∫

0

e−
1
2 ( x−µ1

σ )2

dx and

pu = P (R2 > 0) = 1
σ
√

2π

+∞∫

0

e−
1
2 ( x−µ2

σ )2

dx,

using the assumptions in Section 4.5.1. These connections can be derived from
the updating model (4.18) by setting pi = 100%, resp. pi = 0%, resulting in
the decoder accuracy of the supervised attended, resp. unattended decoder.

Figure 4.Aa now shows a subset of φ(pi) for pi ∈ [0, 50]%, for all evaluated
(µ1, µ2, σ) that obey the three conditions, together with the minimum over all
these φ(pi). Similarly, Figure 4.Ab shows a subset of |φ′(pi)| for pi ∈ [50, 100]%,
for all evaluated (µ1, µ2, σ) that obey the three conditions, together with the
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maximum over all these |φ′(pi)|. Both results are required to show convergence
to a unique fixed point using Theorem 2:

• Result 1: From Figure 4.Aa, it can be seen that φ(pi) > pi,∀pi ∈ [0, 50]%.
This implies that there is no fixed point within this interval and that the
fixed-point iteration will always diverge to the pi ∈ [50, 100]% interval.
This is because ∀ pi ∈ [0, 50]% : pi+1 = φ(pi) > pi, i.e., the new accuracy
in the fixed-point iteration is always larger than the previous one, such
that, inevitably, at a certain iteration, pi+1 > 50%. It thus suffices to
show that there is convergence to a unique fixed point for pi ∈ [50, 100]%,
which is shown in the next result.

• Result 2: From Figure 4.Ab, there are two possible cases, which both
individually can be shown to guarantee convergence to a unique fixed
point:

1. |φ′(pi)| < 1,∀pi ∈ [50, 100]%. For all these cases, we then numerically
confirmed that φ(pi) ∈ [50, 100]%,∀ pi ∈ [50, 100]% such that all
conditions of Theorem 2 are fulfilled to show convergence to a unique
point.

2. ∃ x ∈ [50, 100]% : φ′(pi) ≥ 1,∀ pi ∈ [50, x]% and |φ′(pi)| < 1,∀ pi ∈
[x, 100]%. Since φ(50%) > 50% (see Result 1) and since the derivative
is positive, it is guaranteed that φ(pi) > pi,∀ pi ∈ [50, x]%, i.e.,
there is no fixed point and the fixed-point iteration diverges to
the pi ∈ [x, 100]% interval (using a similar reasoning as in Result
1). Furthermore, it can again be numerically checked that φ(pi) ∈
[x, 100]%,∀ pi ∈ [x, 100]% to show that there is a unique point to
which there is convergence in this interval (see Theorem 2).
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0 50
0

100

minimum

pi [%]

φ(pi) [%]

(a)

50 100
0

1

1.5

maximum

pi [%]

|φ′(pi)|

(b)

Figure 4.A: (a) A subset of the evaluated φ(pi) for pi ∈ [0, 50]% and the minimum
over all evaluated (µ1, µ2, σ) that obey the conditions are all above the identity line,
where φ(pi) = pi, which shows that φ(pi) > pi, ∀ pi ∈ [0, 50]%. (b) A subset of the
evaluated |φ′(pi)| for pi ∈ [50, 100]%, together with the maximum over all evaluated
(µ1, µ2, σ) that obey the conditions.
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5 | Time-adaptive unsupervised
stimulus reconstruction

This chapter is largely based on S. Geirnaert, T. Francart, and A.
Bertrand, "Time-adaptive Unsupervised Auditory Attention Decoding
Using EEG-based Stimulus Reconstruction," Accepted for publication in
IEEE Journal of Biomedical and Health Informatics, 2022.

ABSTRACT | In Chapter 4, we proposed an unsupervised AAD algorithm
based on a stimulus decoder that does not require a dedicated ‘ground-truth’
EEG recording of the subject under test during which the attended speaker
is known. However, this decoder is still trained on a batch of unlabeled
data and remains fixed during operation, and can thus not adapt to changing
conditions and situations. Therefore, in this chapter, we propose an online
time-adaptive unsupervised SR method that continuously and automatically
adapts over time when new EEG and audio data are streaming in. This
adaptive decoder does not require ground-truth attention labels obtained from
a training session with the end-user and instead can be initialized with a generic
subject-independent decoder or even completely random values. We propose
two different implementations: a sliding window and recursive implementation,
which we extensively validate based on multiple performance metrics on three
independent datasets. We show that the proposed time-adaptive unsupervised
decoder outperforms a time-invariant supervised decoder, for example, when
electrodes are disconnected, or when AAD is performed across multiple recording
days. Therefore, the proposed time-adaptive unsupervised SR method represents
an important step towards practically applicable AAD algorithms for neuro-
steered hearing devices.
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5 Time-adaptive unsupervised stimulus reconstruction

5.1 Introduction

In Chapter 4, we proposed an unsupervised algorithm to train a subject-specific
stimulus decoder without the need for ground-truth labels. Consequently, one
of the main issues with the traditional SR method, i.e., the need for acquiring
labeled data during a dedicated training session, is resolved while approximating
the performance of a fully supervised subject-specific decoder (Chapter 4).
However, this unsupervised decoder is still trained in batch on a large amount
of (unlabeled) training data and remains fixed during operation. Such fixed
decoders do not adapt to long-term signal changes due to changing conditions
and situations (e.g., non-stationarities in the neural activity, changing electrode-
skin contact impedances, shifting or loosening electrodes). Therefore, in this
chapter, we modify and extend the algorithm proposed in Chapter 4 such that
the decoder adapts over time in an unsupervised manner. The resulting decoder
does not require a dedicated training session and can automatically adapt to
new incoming non-stationary EEG data from the end-user and thus serves
as one of the first practical plug-and-play AAD algorithms for neuro-steered
hearing devices.

In Section 5.2, we review the (unsupervised) SR algorithm for AAD. In
Section 5.3, we then present and explain the proposed time-adaptive updating
schemes. These implementations are investigated, and the hyperparameter
choices are validated in Section 5.4. The proposed time-adaptive unsupervised
decoder is then tested and compared to the fixed (time-invariant) supervised
decoder in a time-adaptive context in Section 5.5, by simulating a scenario where
electrodes are disconnected and applying the decoders on a dataset recorded
across multiple recording days.

5.2 (Un)supervised SR for AAD

5.2.1 Review of SR

Consider a C-channel EEG signal of which the cth channel is denoted by xc(t),
with t the time sample index. In the linear SR paradigm, a spatio-temporal
filter or decoder dc(l) is applied to this C-channel EEG signal to reconstruct the
speech envelope of the attended speaker sa(t) [5, 74,163] (see also Chapter 3):

ŝa(t) =
C∑

c=1

L−1∑

l=0
dc(l)xc(t+ l),
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5.2 (Un)supervised SR for AAD

with the channel index c ranging from 1 to C (spatial combination of C channels)
and the time lag index l ranging from 0 to L− 1 (temporal integration over L
time samples). This filter is an anti-causal filter, as L post-stimulus time lags
are used to reconstruct the attended speech envelope from the EEG signal. In
the AAD problem, to identify the attended speaker, the reconstructed envelope
ŝa(t) from the EEG is compared with original speech envelopes s1(t) and s2(t)
of the two simultaneously talking speakers through the Pearson correlation
coefficient. For the sake of an easy exposition but without loss of generality, we
here assume only two competing speakers, although all presented algorithms
and procedures can be extended to more speakers.

In the remainder of the chapter, we will adopt a matrix-vector notation, in
which the decoder is written as

d =
[
d1(0) d1(1) · · · d1(L− 1) d2(0) · · · dC(L− 1)

]t ∈ RCL.

Assume (for now) the availability of K training segments of T time samples,
where the available training information is described as {Xk, (s1k , s2k) , yk}Kk=1,
containing an EEG data Xk matrix (collecting all T time samples in training
segment k; a rigorous definition is given in (5.3)), speech envelopes s1k ∈ RT and
s2k ∈ RT (similarly), and attention labels yk ∈ {1, 2}, indicating which speech
envelope (s1k or s2k) is the attended one (sak) (assuming constant attention
across the whole segment). For each training segment k, the attended speech
envelope is determined as

sak =
{

s1k if yk = 1,
s2k if yk = 2. (5.1)

The decoder is then trained by minimizing the squared error between the actual
attended and reconstructed speech envelope across all training segments:

d̂ = argmin
d

K∑

k=1
||sak −Xkd||22 = argmin

d
||sa −Xd||22 , (5.2)

with sa =
[
st

a1 · · · st
aK
]t ∈ RKT the concatenated actual attended speech

envelope and where the block Hankel matrix X ∈ RKT×CL represents the
concatenated time-lagged C-channel EEG with L time lags:

X =




X1
...

XK


 ,Xk =

[
Xk,1 · · · Xk,C

]
∈ RT×CL, (5.3)
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with Xk,c ∈ RT×L a Hankel matrix containing the time-lagged EEG data of
the kth training segment and cth EEG channel:

Xk,c =




xk,c(0) xk,c(1) · · · xk,c(L− 1)
xk,c(1) xk,c(2) · · · xk,c(L)

...
...

...
xk,c(T − 1) 0 · · · 0


 .

Xd̂ = ŝa ∈ RKT then represents the reconstructed speech envelope over all
training segments. The solution of (5.2) is found by solving the normal equations:

d̂ = R−1
xx rxs, (5.4)

with

Rxx = XtX =
K∑

k=1
Xt
kXk ∈ RCL×CL

the estimated EEG autocorrelation matrix and

rxs = Xtsa =
K∑

k=1
Xt
ksak ∈ RCL (5.5)

the estimated crosscorrelation vector between the EEG and the attended speech
envelope. It is important to notice that only in (5.5) we need the attention
labels yk to select the attended speech envelope sak in segment k (see (5.1)).
We use shrinkage to regularize the estimated autocorrelation matrix:

Rxx = (1− λ)XtX + λ
Tr (XtX)

CL
I, (5.6)

with I ∈ RCL×CL the identity matrix and where the shrinkage parameter
0 ≤ λ ≤ 1 is analytically determined [164,165]:

λ = min




K∑
k=1

T∑
t=1

∣∣∣
∣∣∣xk,txt

k,t − 1
KT XTX

∣∣∣
∣∣∣
2

F

Tr
(

(XtX)2
)
− Tr(XtX)2

CL

, 1


 , (5.7)

with xt
k,t ∈ RCL the tth row of the matrix Xk.

Given the estimated decoder d̂ and τtest time samples of a new EEG segment
X(test) ∈ Rτtest×CL of a subject listening to one out of two competing speakers
with speech envelopes s(test)

1 and s(test)
2 , a decision about the auditory attention

of the listener can be made by:
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1. reconstructing the attended speech envelope from the EEG:

ŝ(test) = X(test)d̂

and

2. computing the Pearson correlation coefficients ρ
(
ŝ(test), s(test)

1

)
and

ρ
(
ŝ(test), s(test)

2

)
between this reconstructed speech envelope and the

original speech envelopes. The speaker corresponding to the highest
correlation coefficient is identified as the attended speaker.

For SR, there is an important trade-off between the accuracy of the decision
and the decision segment length τtest, i.e., the number of time samples used to
make a decision (Chapters 2 and 3). A longer decision segment leads to more
accurate estimates of the Pearson correlation coefficients, thereby improving
accuracy on the AAD decisions. However, this comes with the drawback of a
poorer time resolution at which the AAD decisions are made, due to the longer
decision segment length.

5.2.2 Unsupervised SR

Let us now assume that the attention labels {yk}Kk=1 are not known, even during
training, meaning that we do not know to which of the speakers the subject is
attending when designing our decoder (i.e., using (5.1) has become impossible).
If we indeed can train the decoder without these labels, this would avoid the
need for a dedicated training session during which the subject is instructed to
attend to a specific speaker in order to collect ground-truth data. As a result,
performing AAD becomes an unsupervised classification problem. The absence
of labels is a roadblock in the computation of the crosscorrelation vector in (5.5),
which requires the use of the correct speech envelope in its calculation (using
the unattended envelope in (5.5) would result in a decoder that emphasizes the
wrong speaker).

In Chapter 4, we proposed an unsupervised batch-training procedure on an
unlabeled dataset {Xk, (s1k , s2k)}Kk=1 of K segments (i.e., attention labels
{yk}Kk=1 are unavailable/unknown). The main idea is to iteratively retrain
a decoder by using labels that are predicted by the decoder from the previous
iteration. We give a short description of this iterative procedure (see Chapter 4
and Algorithm 2 for a more extensive explanation). We start with an initial
decoder d̂(0) at iteration 0, which can be, e.g., a pre-computed subject-
independent decoder or even a decoder with random entries. First, the EEG
autocorrelation matrix Rxx is estimated as in (5.6), which does not require
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any attention labels. The iterative prediction of the labels and updating of the
decoder then comprises the following steps:

1. given a decoder d̂(i) that is available after the ith iteration, apply it on
each EEG segment Xk to reconstruct the attended speech envelope:

∀k : ŝ(i)
ak = Xkd̂(i).

2. Per segment, correlate the reconstructed speech envelope ŝ(i)
ak with both

speech envelopes (s1k , s2k) to predict the attended speaker. As before,
the first speaker is identified as the attended one if the sample Pearson
correlation coefficient ρ

(
ŝ(i)

ak , s1k

)
> ρ

(
ŝ(i)

ak , s2k

)
and vice versa. The

predicted attended envelope is denoted as spred(i)
k

∈ {s1k , s2k}.

3. Using the EEG segments and corresponding speech envelopes of the
predicted attended speaker {spred(i)

k

}Kk=1, the crosscorrelation vector can
be computed/updated as in (5.5). It is crucial to use the original speech
envelope (s1k or s2k) and not the envelope ŝ(i)

ak that was reconstructed
from the EEG. Given the new crosscorrelation vector, the decoder d̂(i+1)

can be updated as in (5.4). Then return to step (1) and iterate until
convergence.

This iterative unsupervised predicting of labels could potentially inject incorrect
labels and thus incorrect data in the estimation of the decoder, which could
in principle lead to a downwards spiral of incorrect updating and thus to
a badly-performing decoder. Remarkably, we showed in Chapter 4 that a
self-leveraging effect occurs in this batch-mode iterative updating where the
new decoder outperforms the previous decoder, despite the presence of labeling
errors, resulting in an upwards instead of a downwards spiral. This happens even
when the initial decoder is initialized with random values. This unsupervised
subject-specific decoder outperformed a supervised subject-independent decoder
(i.e., trained on data from other subjects than the one under test) and even
closely approximated the performance of a supervised subject-specific decoder.

5.3 Time-adaptive unsupervised SR for AAD

The unsupervised training procedure of Section 5.2.2 assumes the availability of
multiple data segments at once (i.e., batch-training). The batch computation is
inherent to the procedure: once a new decoder is computed, all labels in the
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recording are repredicted to improve the next decoder. After the unsupervised
batch training, the final decoder is fixed and applied to unseen data from the
subject under test. However, such a pre-trained time-invariant decoder does not
adapt to non-stationarities due to changing conditions and situations and may
thus perform suboptimally. Here, we propose a time-adaptive realization of
such an unsupervised AAD decoder, i.e., a decoder that adapts itself over time
when EEG and audio data (processed in envelopes) are continuously streaming
in.

Assume some initial decoder. Data segments of Tud samples of EEG and
audio data start streaming in. At a certain point in time, assume the kth

segment of EEG data Xk ∈ RTud×CL (see (5.3)) and corresponding segments of
the speech envelopes of the two competing speakers (s1k , s2k) ∈ RTud become
available. There is no information available about which speaker is the attended
or unattended one in this segment. The goal is now to update the decoder in
an unsupervised manner based on the newly available information, to which
end we will propose and compare two approaches (Sections 5.3.1 and 5.3.2).

In this time-adaptive procedure, it is important to distinguish the updating
segment length Tud from the decision segment length τtest. The former,
equivalent to the segment length T in the previous sections, corresponds
to the length of the segments on which the prediction of the labels for the
updating/training and the updating/training itself is performed. The latter
corresponds to the length of the segments on which AAD decisions are made to
in the end steer the enhancement algorithm in the hearing device. This decision
segment length is, therefore, much more sensitive to speed (for example, because
of switches in auditory attention (Chapter 2)) than the updating segment length,
as there can be some delay allowed in updating the decoder. Therefore, the
updating segment length is typically larger than the decision segment length
Tud ≥ τtest, i.e., within each updating segment, multiple AAD decisions are
made.

In the time-adaptive sliding window approach (Section 5.3.1), the aforementioned
batch-mode procedure is mimicked (i.e., including repredictions of the labels
of previous segments) but over a finite time horizon which is implemented as
a sliding window. In Section 5.3.2, we propose an alternative time-adaptive
approach that does not recompute previously predicted labels and, therefore,
can be implemented in a recursive manner. This is much more attractive from
a computational and memory usage point of view. Both approaches to update
the decoder are explained in more detail in the following sections.
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5.3.1 Sliding window implementation

In the sliding window implementation (Figure 5.1), a pool of K data segments of
updating segment length Tud is kept in memory and is updated using the first in,
first out (FIFO) principle. When a new data segment {Xk, (s1k , s2k)} becomes
available, the oldest data segment is discarded and the pool is updated with
the newest one, resulting in the new pool

{
Xk−m,

(
s1k−m , s2k−m

)}K−1
m=0. The

stimulus decoder is then updated similarly to the batch-mode implementation
explained in Section 4.3, but on the finite pool of K segments.

First, the EEG autocorrelation matrix of the new segment is computed similarly
to (5.6):

Rxxk = (1− λk)Xt
kXk + λk

Tr (Xt
kXk)

CL
I, (5.8)

with the regularization parameter λk recomputed per new segment k using (5.7).
The aggregated autocorrelation matrix across the whole pool of K segments
can then be updated/recomputed:

Rxx =
K−1∑

m=0
Rxxk−m . (5.9)

The autocorrelation matrices of the previous segments can be recomputed
or stored and retrieved from previous computations. We found empirically
that better results are obtained when regularizing the new autocorrelation
matrix (5.8) before being stored and combined in (5.9), instead of regularizing the
combined autocorrelation matrix (5.9), i.e., after combining the autocorrelation
matrices from the different segments.

Using the decoder d̂k−1 from the previous step, the iterative procedure of
predicting labels, updating the crosscorrelation vector(s), and decoder on the
pool of K segments

{
Xk−m,

(
s1k−m , s2k−m

)}K−1
m=0 can be initiated. Given the

per-segment predicted attended speaker {spredk−m}K−1
m=0 (initially obtained using

d̂k−1), the crosscorrelation vectors can be updated as in (5.5):

rxsk−m = Xt
k−mspredk−m ,∀m ∈ {0, . . . ,K − 1}.

The aggregated crosscorrelation vector and corresponding decoder can then be
computed as:

rxs =
K−1∑

m=0
rxsk−m ⇒ d̂k = R−1

xx rxs.

This predict-and-update procedure is then iterated I times on the same pool of
K segments. Based on Chapter 4 (see, for example, Figure 4.7), we choose I = 5,
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5 Time-adaptive unsupervised stimulus reconstruction

after which the iterative batch updating procedure is generally observed to have
converged to a final decoder (see also Figure 5.6). Given that we iterate over this
pool of K segments, this approach can only be implemented in a sliding window
manner and not recursively. Lastly, the pool size parameter K represents an
important trade-off between accuracy, adaptivity, and computational complexity
and memory usage. A longer sliding window (i.e., larger K) means that more
data is available to compute the decoder, resulting in a better approximation
of the batch-mode decoder but also resulting in a lower adaptivity and higher
memory requirements (see also Section 5.4).

5.3.2 Recursive implementation

As an alternative to the sliding window implementation, we propose a single-shot
predict-and-update scheme (Figure 5.2). As opposed to the sliding window
approach, the labels of previous updating segments are not repredicted, enabling
a recursive implementation that is much more efficient from a computational
and memory usage point of view. In this recursive implementation, the
decoder resulting from the previous update d̂k−1 is applied to the new segment
{Xk, (s1k , s2k)} of length Tud to predict the label of this new segment, resulting
in the predicted attended envelope spredk . To update the decoder, a regularized
autocorrelation matrix is computed based on the new kth segment as in (5.8),
while the predicted attended envelope is used to compute a crosscorrelation
vector as in (5.5):

rxsk = Xt
kspredk .

This new autocorrelation matrix Rxxk and crosscorrelation vector rxsk can then
be combined with the autocorrelation matrix Rxx and crosscorrelation vector
rxs integrating all previous information to update the decoder:

{
Rxx ← αRxx + (1− α)Rxxk

rxs ← βrxs + (1− β)rxsk
⇒ d̂k = R−1

xx rxs.

The influence of the weighting parameters α and β will be empirically evaluated
in Section 5.4.

Unlike the sliding window implementation, which uniformly weighs the K
past segments in the new decoder, this recursive algorithm implements an
exponential weighting across all past segments. This exponential weighting
could be advantageous, especially in an adaptive context, as the more relevant
closest (past) segments have higher weights than those further in the past. One
can choose the weighting parameters α and β such that the center of mass of
the exponential weighting is the same as of the sliding window approach [168]:

α = K − 1
K + 1 and K = 1 + α

1− α. (5.10)
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5.3 Time-adaptive unsupervised SR for AAD

. . .
kth new segment
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)

1. Update Rxx ← αRxx + (1− α)
(

(1− λk)Xt
kXk + λk

Tr(Xt
k Xk)

CL I
)

2. Update rxs ← βrxs + (1− β)Xt
kspredk

3. Recompute d̂k = R−1
xx rxs

2 predict label

3 update decoder

Figure 5.2: The time-adaptive unsupervised recursive predict-and-update scheme to
update a stimulus decoder.

A possible drawback of this recursive implementation is that previous labels are
not repredicted and that one can not apply multiple iterations over a pool of
segments as in the sliding window version. This could lead to slower convergence
or poorer accuracies. However, the upside is that the procedure is much easier
to implement and much more efficient in terms of memory and computation
resources (see Section 5.3.3). In Section 5.4, we will demonstrate that the
impact on convergence speed and accuracy is negligible.

5.3.3 Memory usage

Sliding window implementation

For the sliding window implementation, at least the pool of K EEG segments
(K×Tud×C) and 2K speech envelopes (2K×Tud) need to be stored in memory.
One does not need to store the L different time lags, as these can always be
generated from the original EEG data. Furthermore, it is not possible to simply
store the autocorrelation matrices and crosscorrelation vectors of the previous
EEG segments - which would require less memory usage - as for the repredictions
of the labels, the decoder has to be applied to the original EEG and speech
envelope data. This leads to the following memory usage:

(C + 2)KTud ∼ O(KTudC) ,

where generally Tud >> K or C. As the storage of the sample dimension Tud
is required, this is generally a very high memory usage.
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5 Time-adaptive unsupervised stimulus reconstruction

Recursive implementation

The recursive implementation minimally requires the storage of one autocorre-
lation matrix Rxx (built from CL(CL+1)

2 elements due to symmetry) and one
crosscorrelation vector rxs (built from CL elements). This leads to the following
memory usage:

CL+ CL(CL+ 1)
2 ∼ O

(
C2L2) ,

which is, as expected, much less than the sliding window approach.

To better appreciate the differences, consider the following practical realistic
example with C = 24 EEG channels, L = 6 time lags, pool size K = 19, and an
updating segment length Tud equivalent to 1200 samples (corresponding to 60 s
when the EEG and speech envelopes are downsampled to 20 Hz). The sliding
window approach then requires the storage of 592 800 elements, which is more
than 50 times more than for the recursive implementation, which requires to
only story 10 584 elements.

5.4 Validation and comparison

We test both versions of the time-adaptive unsupervised SR algorithm of
Section 5.3 for different hyperparameter settings (i.e., the updating segment
length Tud, pool size K in the sliding window implementation, and exponential
forgetting factors α, β in the recursive implementation). In all experiments,
we start from a different fully random initial decoder, generating the first
prediction(s). In the recursive implementation, the initial autocorrelation
matrix and crosscorrelation vector are initialized with all zeros. We compare the
sliding window and recursive implementation and select a set of hyperparameters
on one dataset (Dataset A), and validate the chosen algorithm on a second one
(Dataset B). These datasets are concisely described in Section 5.4.1, while the
performance metrics are described in Section 5.4.2. The experiments and results
are discussed in Section 5.4.3, with a more detailed discussion on the effect of
repredictions of the labels in the sliding window approach in Section 5.4.4. The
final settings are validated on Dataset B in Section 5.4.5.
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5.4 Validation and comparison

5.4.1 Data and preprocessing

AAD datasets

The first AAD dataset (Dataset A) is from [1] and contains the EEG (64-channel
BioSemi ActiveTwo system) and audio data of 16 normal-hearing subjects
participating in an AAD experiment, where the subjects were instructed to
listen to one of two competing speakers located at ±90◦ azimuth direction (in
dichotic and HRTF-filtered listening conditions). Per subject, eight stories of
6 min and 12 repetitions of 2 min of those stories are presented, resulting in
72 min data per subject. This dataset is available online [132].

The second AAD dataset (Dataset B) is from [2] and will act as an independent
validation dataset. It contains the EEG (64-channel BioSemi ActiveTwo system)
and audio data of 18 normal-hearing subjects in a similar AAD experiment with
two competing speakers, located at ±60◦ azimuth direction (HRTF-filtered) and
using different acoustic room properties. Per subject, 50 min of data (60× 50 s
trials) are available. This dataset is also available online [133].

Preprocessing

To preprocess the EEG and audio data, we applied the same preprocessing
steps as in [1] and Chapter 4. The speech signals are first filtered using a
gammatone filterbank. Using a power-law operation with exponent 0.6, an
envelope is computed for each subband signal. All subband envelopes are
afterwards summed to one envelope. Both EEG and speech envelopes are
filtered between 1–9 Hz and downsampled to 20 Hz (Dataset A)/32 Hz (Dataset
B). In neither of the datasets, additional re-referencing or artifact rejection has
been applied.

5.4.2 Performance metrics

To evaluate a specific implementation with a specific set of hyperparameters,
we use three performance metrics, quantifying the accuracy, adaptivity, and
memory usage of each algorithm:

• Final accuracy: the final accuracy is defined as the average of the
accuracies on the independent test set across the last 5 min of updating,
i.e., after the adaptive decoder has had sufficient time to converge to a
steady-state regime.
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5 Time-adaptive unsupervised stimulus reconstruction

• Settling time: in a time-adaptive context, not only accuracy but also
adaptivity or speed of adaptation is an important metric. Here, we
quantify the adaptivity with the settling time, defined similarly as in
control theory [169]. This settling time is defined as the point in time
where the accuracy has reached a threshold for the first time and remains
above the lower bound of a predefined error band for the remainder of the
updating procedure. The threshold is defined as a convex combination of
the final accuracy and the initial chance level performance (50%; before
the updating procedure):

threshold = 0.95× final accuracy + 0.05× 0.5.

The error band, which allows taking the variability into account, is defined
as:

error band = final accuracy± 2M,

with M the difference between the maximum and minimum across the
last 5 min accuracies.

• Memory usage: the memory usage, i.e., the number of elements that
need to be stored in memory, is computed as in Section 5.3.3.

Figure 5.3 illustrates the final accuracy and settling time performance metrics for
a representative subject and specific implementation (this figure is only meant
to illustrate the updating procedure and the definitions of the performance
metrics, and should not be viewed as a validation result).

5.4.3 Hyperparameter selection

We test the different implementations of Section 5.3 for different hyperparameter
settings on Dataset A. Per subject, we randomly permute the 6 min trials of the
first 48 min and use those as the updating set, i.e., the data on which the time-
adaptive unsupervised updating from a random initial decoder is performed.
To track the accuracy of the updated decoder over time, after each update,
we evaluate the decoder on the separate set of the last 24 min of repetition
data, using τtest = 30 s decision segments to make a decision about the auditory
attention (i.e., to compute the Pearson correlation coefficient with both speech
envelopes). Per subject, we perform ten random permutations. For the decoder,
we choose time lags up to 250 ms [1,74], which corresponds to L = 6 for Dataset
A and L = 9 for Dataset B (as both are sampled at different rates). We choose
updating segment length Tud = 60 s (different from decision segment length
τtest = 30 s), i.e., we update the decoder every 60 s. As the performance of the
stimulus decoder heavily depends on the amount of data available to make a
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Figure 5.3: Illustration of the adaptation curve and performance metrics for a
representative subject (Subject 4) of Dataset A, starting from a random initial decoder
and updating every 60 s, for the recursive implementation with α = β = 0.9 (average
across ten runs).

decision (Chapters 2 and 3), similarly to Chapter 4, we choose Tud as large as
possible - without waiting too long - to produce as reliable labels as possible. As
explained in the introduction of Section 5.3, we can afford such a longer delay
in updating (as opposed to the decision segment length (Part I), explaining why
we work on different time resolutions for the updating and testing). However,
we do not take Tud larger than 60 s, as the performance of the stimulus decoder
starts to saturate above this segment length, and because this would require a
too long sustained attention on the same speaker.

Figure 5.4 shows the average final accuracy, settling time, and memory usage
for different settings of the sliding window and recursive implementations across
the 16 subjects of Dataset A and ten random permutations. To compute the
final accuracy per setting, 16 (number of subjects) ×10 (random permutations)
×5 (number of time points of updating: see Section 5.4.2) ×48 (number of
30 s decision segments in the 24 min test set) evaluations are thus performed.
The sliding window implementation is evaluated for different updating segment
lengths (Tud ∈ {60, 30, 10 s}) and pool sizes (K ∈ {10, 20, . . . , 60}, except for
Tud = 60 s, where the maximum is K = 40). Only the results for Tud = 60 s
updating segments are shown, which are found to be superior to Tud = 30 s and
10 s. Therefore, and for the clarity of Figure 5.4, the recursive implementation
is only evaluated for Tud = 60 s and α, β ranging independently from each other
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Figure 5.4: Settling time versus final accuracy for different parameter settings across
the 16 subjects of Dataset A and ten random permutations per subject. The shaded
area highlights the points that are close to or in the Pareto front. The indicated
recursive algorithm with α = β = 0.9 gives one of the best trade-offs between final
accuracy, adaptivity, and memory usage across the evaluated settings.

from 0.6 to 0.95 in steps of 0.05 and α = β ranging in more fine-grained steps of
0.005 from 0.8 to 0.95. As can be seen in Figure 5.4, the memory usage of the
recursive implementation is the same for every setting, while this is dependent
on the pool size K and updating segment length Tud for the sliding window
implementation (Section 5.3.3). In general, there is a clear positive correlation
between a higher final accuracy and a higher settling time, representing the
trade-off between accuracy and adaptability of the decoder. The points in the
shaded lower envelope area of the point cloud in Figure 5.4 represent the Pareto
front, i.e., the settings that give the best trade-off between a high final accuracy
and low settling time.

Surprisingly, the Pareto front of the recursive implementations (i.e., without
repredictions of previous labels) seems to achieve very similar performances in
terms of final accuracy and settling time as the sliding window implementations
(i.e., with repredictions of previous labels). In Section 5.4.4, we will investigate
more closely why these repredictions of previous labels seem to have such
little effect. Moreover, the recursive implementation requires on average 16×
less memory than the sliding window implementation (see Figure 5.4) and is
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computationally more efficient, making it the preferred implementation.

As indicated in Figure 5.4, one of the best choices across the evaluated settings
is the recursive implementation with α = β = 0.9, resulting on average in 74.4%
final accuracy (standard deviation 12.1%) after 21.4 min (st. dev. 11.7 min)
(see Figure 5.5 for the per-subject performances). The latter implies that it
takes about 20 min before the decoder has learned how to optimally decode the
attended speaker starting from a random decoder. These settings are therefore
used in the remainder of the experiments. Although there are a few settings
of the sliding window implementation (i.e., Tud = 60 s and K = 40) that give
a slightly better final accuracy for similar settling times, they require more
memory storage (42× more elements) and are also computationally heavier
(due to the repredictions of the labels). Lastly, plugging in the hyperparameter
values α = β = 0.9 in (5.10), which allows converting the forgetting factors α
and β of the recursive implementation to the equivalent pool size parameter
K of the sliding window implementation, results in K = 19 min. This is
indeed consistent with the results of the sliding window implementation with
K = 19, which has a very similar performance (73.6% (st. dev. 13.2%) in
19.4 min (st. dev. 11.5 min)) while requiring much more memory. There is no
noticeable benefit from the exponential weighting over the uniform weighting,
given that the performance is tested on an asynchronous, independent test
set. In Section 5.5.2, we will concurrently test and update on the same data,
potentially revealing the benefit of exponential weighting.

5.4.4 Effect of repredictions

The results in Section 5.4.3 show that the single-shot recursive implementation,
without repredictions of the labels, performs on par with the sliding window
implementation with repredictions of the labels of previous segments. This
suggests that, in the considered time-adaptive context, the iterative repredictions
of labels on the current pool of K segments have no additional benefit and that
the labels hardly change between before and after the relabeling procedure. This
is confirmed by computing the total number of labels that changed before and
after the iterative relabeling procedure in all updates before the settling time,
i.e., before reaching steady-state performance. For Tud = 60 s, this total number
of labels that changed is (on average across subjects and random permutations
in Section 5.4) only 0.16 for K = 10, 0.70 for K = 20, and 1.13 for K = 40.
This shows that the number of self-corrected labels in the iterative relabeling
procedure is minimal, even more so if the pool size K is small.

To more closely investigate this dependence of the relabeling on the pool size
K, we compute the training accuracy (i.e., the percentage of correct labels in
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Figure 5.5: Individual settling time versus final accuracy per subject of Dataset A
and Dataset B (average across runs) for the chosen recursive implementation with
α = β = 0.9, Tud = 60 s (Dataset A) and α = β = 0.916, Tud = 50 s (Dataset B).

the updating set) in the different iterations as a function of the size of the
updating set for the batch-mode unsupervised algorithm in Chapter 4 using
Tud = 60 s updating segments and τtest = 30 s decision segments. Per subject
and size of the updating set, ten runs with different randomly selected updating
sets of size K from the total dataset are performed. Figure 5.6 then shows
the average training accuracy across subjects and runs on Dataset A. From
Figure 5.6, it is clear that the self-correcting behavior on the predicted labels
of the first iteration only starts to occur when the updating set contains more
than 14–20 min of data. This can be explained from a mathematical point of
view as an overfitting effect: when K is small, the decoder has enough degrees
of freedom to span all initial predictions in the subsequent iterations, leading to
an overfitted decoder.

When K ≥ 14, there is a clear effect of the second and subsequent iterations
(until convergence to the fixed point). This effect, however, seems not to be
present in the time-adaptive context. This is explained by considering the
initial decoder for each new decoder update when a new segment becomes
available. In the batch-mode design, this initial decoder is always a random
decoder, whereas in the time-adaptive context, this will only be the case for
the first received data segment. In the later updates, the initial decoder is
already improved based on past data. Consider the case of Tud = 60 s,K = 20
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Figure 5.6: The training accuracy on 30 s decision segments for the batch-mode
unsupervised iterative updating procedure as a function of the amount of updating
data, for different numbers of relabeling iterations (‘init’ refers to the accuracy when
no iterations are performed; average across all subjects of Dataset A and random
permutations). Given that the updating segment length Tud = 60 s, the amount of
updating data corresponds to pool size K (in minutes).

in Figure 5.6. In the time-adaptive case, already 19 updates will have been
completed before a full pool of K = 20 segments becomes available. After 19
updates, however, the decoder has already substantially improved (see also
Figure 5.3). Therefore, as suggested in Figure 5.6, the decoder will not exhibit
random performance but performance close to the one of the converged decoder
in Figure 5.6. Consequently, the effect of a reprediction on the labels on previous
segments in the pool will be similar to the effect of the last iterations (3, 4, 5)
in Figure 5.6, that is, very small. In other words, the initial decoder is then
already close to the fixed point of the updating procedure (Chapter 4).

Given the important trade-off in memory usage and computational complexity,
these insignificant improvements do not outweigh the additional required
resources.
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5 Time-adaptive unsupervised stimulus reconstruction

5.4.5 Validation on an independent dataset

To confirm that the recursive implementation with Tud = 60 s and α = β = 0.9
is a robust choice across subjects and datasets, and that no overfitting of the
hyperparameters has occurred on Dataset A, we apply the recursive algorithm
on the completely independent Dataset B, again starting from a fully random
decoder. Given that Dataset B only contains 50 s trials, we choose Tud = 50 s.
Furthermore, given that α = β = 0.9 is equivalent with K = 19 according
to (5.10), resulting in a 19 min history when using 60 s segments, this becomes
K = 22.8 for 50 s segments. Using (5.10), the equivalent choice for Dataset B
becomes α = β = 0.916.

We test this recursive implementation with Tud = 50 s and α = β = 0.916 on
each of the 18 subjects of Dataset B by ten times randomly selecting 40 min as
the updating set and the remaining 10 min as test set. The average final accuracy
and settling time (on 30 s decision segments) are 76.2% (st. dev. 12.4%) and
18.8 min (st. dev. 10.3 min) (see Figure 5.5 for the per-subject performances).
As this is very similar to the performance obtained in Section 5.4.3 (and even
slightly better), it confirms that the chosen specific recursive implementation is
a robust choice.

5.5 Evaluation in time-adaptive context

In Section 5.4, we have tested the proposed time-adaptive unsupervised SR
algorithm asynchronously, i.e., the test set is time-independent from the updating
set. While these experiments allowed to investigate the behavior of the proposed
method, they do not necessarily reflect a practical use case of the algorithm
as in a neuro-steered hearing device application, i.e., while the time-adaptive
unsupervised decoder needs to simultaneously update/adapt and provide AAD
decisions. In Section 5.5.1, we simulate on Dataset A a situation where electrodes
are disconnected, for example, due to movements. In Section 5.5.2, we then
evaluate the time-adaptive unsupervised decoder on a third dataset (Dataset
C), i.e., while needing to adapt across multiple recording days.

5.5.1 Suddenly disconnecting EEG electrodes

Experiment

We compare the fixed supervised decoder with the proposed time-adaptive
unsupervised decoder using the selected recursive implementation with α =
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5.5 Evaluation in time-adaptive context

β = 0.9 and Tud = 60 s from Section 5.4, when simulating a situation where
electrodes are disconnected. Per subject of Dataset A, we randomly permute
the 6 min-trials of the first 48 min, to which we add the last 24 min of repetition
data, resulting in 72 min of data. The fixed supervised decoder is trained on the
first 30 min (i.e., using the available attention labels). Furthermore, also during
these first 30 min, the time-adaptive unsupervised decoder has time to update
itself starting from a fully random initial decoder, with the autocorrelation
matrix and crosscorrelation vector initialized with all zeros.

After these first 30 min of data, we simulate the case where a number of electrodes
are disconnected, as could occur in practice, by setting some EEG channels to
zero. On these last 42 min of data with disconnected electrodes, the original
fixed supervised decoder (trained with all electrodes) is then applied on each
τtest = 30 s decision segment, while the time-adaptive unsupervised decoder
keeps on continuously updating per Tud = 60 s, and decoding the auditory
attention per τtest = 30 s decision segment. We then compare both decoders
after the electrodes are disconnected, i.e., by computing the accuracy across all
binary decisions on the last 42 min (thus also taking the settling period of the
adaptive decoder after the change into account).

This experiment is performed in two scenarios: when starting from the full
high-density 64-channel EEG setup and from a reduced 22-channel subset, where
the electrodes are selected corresponding to the mobile 24-channel SMARTING
EEG system from mBrainTrain. The latter is added to compare the results
with those in Section 5.5.2, where a third dataset (Dataset C) is introduced that
is recorded using this 24-channel EEG system. The number of disconnected
electrodes is varied from 0 to 32 (for the 64-channel case) and from 0 to 11
(for the 22-channel case). Per number of disconnected electrodes, ten random
permutations (i.e., of randomly permuting the first eight 6 min-trials and set of
disconnected electrodes) are performed.

Results

Figure 5.7a shows the average accuracy across all 16 subjects of Dataset A
and the ten random permutations (per subject and number of disconnected
electrodes) as a function of the number of disconnected electrodes, starting from
the full high-density 64-channel setup and reduced 22-channel setup. When no
electrodes are disconnected, the fixed supervised decoder outperforms the time-
adaptive unsupervised one with around 4.4% in accuracy in both cases. This
difference in accuracy is expected and in line with the batch results obtained
in Chapter 4. However, in the 64-channel setup, already when disconnecting
three electrodes, the adaptive unsupervised decoder performs better than the
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5 Time-adaptive unsupervised stimulus reconstruction

fixed supervised one. This effect is already present after two electrodes for the
more mobile setup of 22 channels. The difference between both decoders then
increases up to 13.9% for the 64-channel setup and 8.3% for the 22-channel
setup.

These performance differences seem to be mainly due to the decrease in accuracy
of the fixed supervised decoder, which has been trained without taking the
disconnected electrodes into account, while the time-adaptive unsupervised
decoder remains relatively stable (especially in the 64-channel case). This
shows that the latter decoder can effectively adapt to disconnected electrodes,
quickly finding an almost equivalent alternative way to decode the attended
speech envelope from the reduced set of electrodes. The fact that the adaptive
decoder obtains similar performances with only 32 channels compared to 64
channels comes not as a surprise, given that in [121], it was shown that the
number of EEG channels could be reduced to around ten without a loss in
performance, however, given an optimal channel selection procedure (while here
we simulate random electrode disconnections, as would occur in practice) (see
also Section 1.7.3).

This experiment clearly shows the added value of the time-adaptive unsupervised
approach, effectively and automatically adapting to changes in the EEG setup,
here simulated by electrodes that are disconnected. Furthermore, we have
only simulated one change in the (EEG) setup in an otherwise very controlled
experiment, and already obtained a better performance with the time-adaptive
approach when two or three electrodes are disconnected. In practice, such
changes would occur in combination with other non-stationarities in the data,
which is investigated in the next section.

5.5.2 Adaptation across multiple recording days

While in Section 5.5.1, the proposed time-adaptive unsupervised decoder is
tested in a more time-adaptive context where electrodes are disconnected, the
non-stationarities in the data are still limited to this single change. Furthermore,
the EEG data per subject are recorded in one session, with only small breaks in
between, and in a very controlled setup. Therefore, in this section, we evaluate
the proposed method on a third dataset (Dataset C) where the decoder needs to
adapt across multiple days of recordings, potentially combined with electrodes
that are disconnected.
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Figure 5.7: The accuracy on 30 s decision windows of the fixed supervised and time-
adaptive unsupervised decoder as a function of the number of disconnected electrodes
for (a) Dataset A (electrodes are disconnected after the first 30 min of (training) data)
and (b) Dataset C (electrodes are disconnected after the first two (training) sessions).
The accuracies are averaged over all 16/2 (Dataset A/Dataset C) subjects and ten
runs (per subject and number of disconnected electrodes).
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5 Time-adaptive unsupervised stimulus reconstruction

Data and preprocessing

AAD dataset We use a third dataset (Dataset C) containing EEG and audio
data of two subjects from a longitudinal AAD experiment across multiple days,
carried out at the participants’ homes. A two-talker AAD experiment was
conducted in eight different sessions that took place on seven different days. In
each session, four blocks of 6 min stories are presented to each subject, resulting
in a total of 192 min of AAD data per subject. The audio stimuli differed
across all sessions. The first two sessions took place on the same day, while
the other six sessions took place on different days (see also Figure 5.8). The
EEG was measured using a 24-channel SMARTING mobile EEG system from
mBrainTrain.

While this dataset was initially recorded for the purpose of neurofeedback
experiments, it can be used to test the proposed time-adaptive unsupervised
decoder as it reflects the practical use case of a neuro-steered hearing device.
The algorithm will need to adapt over various days, meaning that there will
be changes in, for example, EEG setup, electrode impedances, conditions,
speaker and story characteristics, and state of mind of the user, as would all
occur in practice. While two subjects are not enough to draw firm (statistical)
conclusions, it allows showcasing how the proposed algorithm can be used in a
practical, online context.

Preprocessing The EEG data and audio envelopes are preprocessed in the
same way as in Section 5.4.1. The only difference is that L = 400 ms is chosen
as the post-stimulus range of time lags for the decoder, reflecting the choice
in [3].

Experiment

We compare the fixed supervised decoder with the proposed time-adaptive
unsupervised decoder. Again, we only consider the recursive version of the
time-adaptive decoder, as it performs similarly to the sliding window version
while requiring much less resources. As shown in Figure 5.8, the supervised,
fixed decoder is trained on the 48 min of data from the first two sessions on
the first day, using the information about which speaker is the attended one.
This fixed decoder is then applied per τtest = 30 s decision segment on all other
sessions on the other days. As such, this decoder reflects the practical use case
where first data of a new neuro-steered hearing device user need to be recorded
in an a priori calibration session, whereafter the trained decoder is loaded onto
the device.
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5 Time-adaptive unsupervised stimulus reconstruction

The time-adaptive unsupervised decoder is implemented using the settings as
determined in Section 5.4 and is initialized with a fully random decoder, while
the autocorrelation matrix and crosscorrelation vector are initialized with all
zeros. Per Tud = 60 s, the decoder is continuously updated using the recursive
implementation with α = β = 0.9. To fully leverage the time-adaptivity of this
decoder, after each update, it is, similarly to Section 5.5.1, applied to the next
two τtest = 30 s decision segments to make AAD decisions1 (Figure 5.8). The
first 48 min of the first two sessions on the first day are used to let the decoder
initialize and converge as in Figure 5.3, starting from a random initial decoder.
In between sessions, as one would do in a practical scenario as well, the current
autocorrelation matrix Rxx and crosscorrelation vector rxs are re-used (hence
the ‘parameter transfer’ in Figure 5.8) and not re-initialized each time from
scratch.

Per 30 s decision segment, a decision about the attended speaker is made,
resulting in a binary correct/incorrect decision. To provide a comprehensible
plot when plotting the accuracy over time, these binary decisions are smoothed
using a 29-point moving average (i.e., per segment taking the past and following
7 min into account). To assure a fair comparison between the fixed supervised
and time-adaptive unsupervised decoder, the total accuracy is computed as the
average over all binary decisions across all but the first 48 min of the first two
sessions on the first day.

Lastly, similarly to Section 5.5.1, we evaluate the performance in case one or
more electrodes are disconnected by simulating 0 to 12 disconnected electrodes
after the first two sessions (see also Section 5.5.1). Per number of disconnected
electrodes, ten random selections of electrodes are performed.

Results

Figure 5.9 shows the smoothed accuracy as a function of time of both the fixed
supervised and time-adaptive unsupervised algorithm for both test subjects. As
explained before, there is no test accuracy present in the first 48 min for the
fixed supervised decoder, as it is trained on those sessions. During those first
two sessions, the time-adaptive unsupervised decoder converges after ±25 min,
starting from a random initial decoder. This is more or less in line with the
results of Sections 5.4.3 and 5.4.5.

The fixed supervised decoder reaches a total accuracy of 80.2% (subject 1)
and 78.5% (subject 2), while the proposed time-adaptive unsupervised decoder
reaches a total accuracy of 80.2% and 83.0%. The latter thus performs on par

1Two 30 s decision segments as the decoder is only being updated every 60 s.
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5 Time-adaptive unsupervised stimulus reconstruction

with the former for the first subject while outperforming the former with 4.5%
for the second subject. Furthermore, our approach does not require an a priori
calibration session with the end-user but can be implemented in a plug-and-play
fashion on a device. Lastly, more severe changes in the setup and conditions can
occur. For example, Figure 5.7b shows the results of simulating disconnected
electrodes. When no electrodes are disconnected, the accuracies are the same as
in Figure 5.9. However, when one electrode is disconnected, the time-adaptive
unsupervised decoder already outperforms the fixed supervised decoder with
6.0%, increasing to 16.6% when 12 electrodes are disconnected. This shows that
the proposed method would be able to adapt to such changes, while the fixed
supervised decoder only performs worse.

To evaluate whether, besides the favorable memory usage, the recursive
implementation also benefits from the exponential weighting compared to
the uniform weighting in a sliding window implementation in a time-adaptive
context, we test the sliding window implementation with K = 19 (i.e., equivalent
to α = β = 0.9) but without repredictions of the labels (to be in line with the
recursive implementation which also does not repredict previous labels). The
resulting accuracy is 79.9% (subject 1) and 81.6% (subject 2). While this is for
both subjects worse than the recursive implementation, we cannot draw firm
conclusions about this based on two subjects alone. However, as expected, these
results at least suggest that an exponential weighting is favorable compared to
a uniform weighting in a time-adaptive context.

Although data from only two subjects are available in this experiment, hampering
clear statistical conclusions, the results clearly show the potential of the proposed
time-adaptive unsupervised decoder in a practical AAD use case.

5.6 Discussions and conclusion

We adapted the offline batch version of the unsupervised SR algorithm for AAD
as proposed in Chapter 4 to a time-adaptive online version. This allows the
decoder to automatically adapt to non-stationarities in the EEG and audio. We
have developed both a sliding window implementation with repredictions of
previous labels in a finite pool and a single-shot predict-and-update recursive
implementation without repredictions. The latter has the advantage, as it
results in similar performances (Section 5.4) for much less memory usage and
computational requirements. We have selected the algorithm’s hyperparameters
via extensive experiments and validated these on an independent dataset.
Furthermore, we explained why there are hardly any changes in labels when
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5.6 Discussions and conclusion

using iterative repredictions in this time-adaptive context while this is the case
in the batch-mode algorithm presented in Chapter 4.

We have also shown the additional benefit of the time-adaptive unsupervised
decoder compared to the fixed supervised decoder in a time-adaptive scenario,
for example, when simulating electrode disconnections (Section 5.5.1). When
electrodes are disconnected, the former starts to clearly outperform the latter.
Lastly, the proposed time-adaptive unsupervised decoder outperformed the
fixed supervised decoder on a dataset that reflects a practical AAD use case
(with testing across multiple sessions on different days; Section 5.5.2). Given
that this dataset only contains two subjects, we are careful in drawing firm
conclusions. The results, however, clearly show the potential of the proposed
method.

As explained in Chapters 2 and 3, the SR method does not perform well
enough on short decision segment lengths for the online AAD application. In
Section 5.5.2, there were no switches in auditory attention present, such that a
high accuracy could be obtained with 30 s decision segments. While this reduces
the relevance of the proposed algorithm as the ‘decision-maker’ in AAD, it is
an excellent candidate to provide reliable labels of the auditory attention to
update a faster algorithm (such as the algorithms proposed in Part III) (see
also Section 8.2).

In conclusion, the developed time-adaptive unsupervised SR method is an
important step forward to the online application of AAD in neuro-steered
hearing devices.
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Part III

Decoding the spatial focus of
auditory attention
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6 | Common spatial pattern-based
decoding of the spatial focus
of auditory attention

This chapter is largely based on S. Geirnaert, T. Francart, and A.
Bertrand, "Fast EEG-based Decoding of the Directional Focus of Auditory
Attention Using Common Spatial Patterns," IEEE Transactions on
Biomedical Engineering, vol. 68, no. 5, pp. 1557-1568, 2021.

ABSTRACT | As explained in Chapter 3, most state-of-the-art AAD
algorithms employ an SR approach. This approach, however, performs poorly on
short decision windows, while longer windows yield impractically long detection
delays when the user switches attention. Therefore, we propose decoding
the spatial focus of attention using filterbank common spatial pattern filters
(FB-CSP) as an alternative AAD paradigm, which does not require access to
the clean source envelopes. The proposed FB-CSP approach outperforms both
the SR approach on short decision windows, as well as a CNN approach on
the same task. We achieve a high accuracy (80% for 1 s windows and 70% for
quasi-instantaneous decisions), which is sufficient to reach MESDs below 4 s.
We also demonstrate that the decoder can adapt to unlabeled data from an
unseen subject and works with only a subset of EEG channels located around
the ear to emulate a wearable EEG setup. Given the high accuracy on very
short data windows, the proposed algorithm is a major step forward towards
practical neuro-steered hearing devices.
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6 CSP-based decoding of the spatial focus of auditory attention

6.1 Introduction

The discovery that the cortical activity follows the envelope of the attended
speech stream (Section 1.5) laid the foundation of a first class of AAD algorithms
based on non-invasive neural recordings from EEG. These algorithms typically
employ an SR approach in which a decoder reconstructs the attended speech
envelope from the EEG (Section 3.2.1). The decoded envelope is then correlated
with the speech envelopes of the individual speakers. The speaker corresponding
to the highest correlation coefficient is identified as the attended speaker. As
shown in Chapter 3, AAD algorithms using the SR approach, however, all suffer
from the same limitations:

1. The SR approach takes too long to make a reliable decision. The AAD
accuracy (the percentage of correct decisions) drastically decreases with
shorter decision windows, especially below 10 s (Part I). A decision window
corresponds to the signal length over which the correlation coefficients
between the EEG-decoded envelope and the original speech envelopes are
estimated, where short decision windows result in unreliable correlation
estimates. This results in a speed-accuracy trade-off. In Chapter 2, it is
shown that short decision window lengths are favorable in the context of
robust AAD-based gain control during dynamic switching, even if they
have a lower accuracy. Nevertheless, due to the low accuracy for these short
decision window lengths, it theoretically takes more than 15 s to establish
a reliable and controlled gain switch to the new attended speaker after the
user switches attention (Chapter 3). This is impractically long for neuro-
steered hearing device applications. The SR approach inherently suffers
from this limited performance due to the decoding of a low-frequency
envelope, which contains relatively little information per second, as well
as due to the low SNR of the neural response to the stimulus in the EEG.

2. The SR approach requires the (clean) individual speech envelopes.
Although several attempts have been made to combine speech separation
algorithms with AAD (Section 1.7.2), the demixing of all speech envelopes
adds a lot of overhead, and the demixing process often negatively affects
AAD performance or may even completely fail in practical situations.

In this chapter, we employ a new paradigm that avoids these limitations,
focusing on decoding the spatial focus of attention from the EEG rather than
directly identifying the attended speaker. Inherently, this avoids the need to
demix the speech mixtures into their individual contributions. Moreover, we
hypothesize that this paradigm will improve AAD accuracy for short decision
window lengths, as it is based on brain lateralization, which is an instantaneous
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6.2 Decoding spatial focus of attention using CSPs

spatial feature rather than a correlation-based temporal feature. The approach
proposed in this chapter is rather a classification-based than SR-based method
and can therefore be classified into the ‘linear direct classification’ branch of
the tree of AAD algorithms proposed in Figure 3.1.

This new AAD paradigm is justified by recent research that shows that the
auditory attentional direction is spatio-temporally encoded in the neural activity
(Section 1.6), ergo, that it could be possible to decode the spatial focus of
attention from the EEG. Vandecappelle et al. proposed in [136] an AAD
algorithm based on a CNN to decode the spatial focus of attention in a competing
speaker scenario, which showed very good results on short decision windows
(76.1% accuracy on 1 s decision windows) (see also Chapter 3 for a description).
However, this CNN-based approach shows high inter-subject variability and
requires large amounts of training data (for example, data of other subjects in
combination with subject-specific data as in [136]) to train a subject-specific
decoder. Therefore, in this chapter, we focus on data-driven linear filtering
techniques, which typically require less training data, are more robust and
stable, and are computationally cheaper, as well as easier to update. More
specifically, we exploit the direction-dependent spatio-temporal signatures of
the EEG using (filterbank) common spatial pattern (FB-CSP) filters, which are
popular in various BCI applications [38,170].

In Section 6.2, we concisely introduce the (FB-)CSP classification pipeline to
determine the spatial focus of attention. In Section 6.3, we describe the data
used to run experiments, the concrete choices for the FB-CSP filter design,
and the performance metrics to transparently and statistically validate the
experiments that are reported and analyzed in Section 6.4. Conclusions are
drawn in Section 6.5.

6.2 Decoding spatial focus of attention using CSPs

In this section, we review the CSP procedure [170] to decode the spatial focus of
attention. CSP filtering is one of the most popular techniques used for spatial
feature extraction in BCI applications, for example, in motor imagery [38,170,
171]. The goal is to project multi-channel EEG data into a lower-dimensional
subspace that optimally discriminates between two conditions or classes based
on variance (rather than separating the means as in LDA). This is established by
optimizing a spatial filter in a data-driven fashion, which linearly combines the
different EEG channels into a few signals in which this discriminative property
is maximally present.
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6 CSP-based decoding of the spatial focus of auditory attention

For the sake of an easy exposition, we first define CSP filtering for a binary
AAD problem, i.e., decoding whether a subject attends to one of two speaker
positions, in Sections 6.2.1 and 6.2.2. In Section 6.2.3, we explain how this can
be generalized to more than two classes/directions. Finally, in Section 6.2.4,
we explain how the method can be applied to EEG data from unseen subjects
without the need for any ground-truth labels on their auditory attention.

6.2.1 CSP filtering

Consider a zero-mean C-channel EEG signal x(t) ∈ RC×1, which can, on each
time instance t, be classified into one of two classes C1 and C2 (for example,
attending the left or right speaker). The goal is to design a set of K spatial
filters W ∈ RC×K that generate a K-channel output signal with uncorrelated
channels y(t) = Wtx(t) ∈ RK×1, where the K

2 first filters maximize the output
energy when t ∈ C1, while minimizing the output energy when t ∈ C2, and vice
versa for the last K

2 filters.

For example, the first column w1 of W results in y1(t) = wt
1x(t), which should

have a maximal output energy when t ∈ C1 and a minimal output energy when
t ∈ C2:

w1 = argmax
w

1
|C1|

∑
t∈C1

(wtx(t))2

1
|C2|

∑
t∈C2

(wtx(t))2

⇔ w1 = argmax
w

wtRC1w
wtRC2w ,

with
∣∣C1/2

∣∣ the number of time instances in C1/2 and

RC1/2 = 1∣∣C1/2
∣∣
∑

t∈C1/2

x(t)xt(t) (6.1)

the sample covariance matrices of class C1 and C2. Fixating the output energy
when t ∈ C2, i.e., wtRC2w = 1, which is possible because w is defined up to a
scaling, and solving the optimization problem using the method of Lagrange
multipliers leads to the following necessary condition for optimality:

RC1w = λRC2w, (6.2)

which corresponds to a generalized eigenvalue decomposition (GEVD)/problem.
It can easily be seen that the maximum is obtained for the generalized eigenvector
(GEVc) corresponding to the largest generalized eigenvalue (GEVl). A similar
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X Apply
filterbank

Apply
FB-CSP filters

Compute log-energy
per output

Classify
log-energy vector

class (e.g., left or
right attended)

Xb Yb = Wt
bXb f

sign(D (f))

Figure 6.1: The FB-CSP filter outputs are used to generate the features that can be
used to classify the EEG window X.

reasoning can be followed for wK , which maximizes, respectively minimizes
the output energy when t ∈ C2, respectively C1, and is equal to the GEVc
corresponding to the smallest GEVl in (6.2). The other spatial filters can
be found as the subsequent largest and smallest GEVcs. In its core essence,
designing CSP filters thus corresponds to a joint diagonalization of the class-
dependent covariance matrices [170].

6.2.2 Classification using CSP filters

The CSP filtering technique can now be employed in a classification pipeline,
in which a newly recorded EEG signal x(t) ∈ RC×1, containing C channels, is
classified into one of two classes, representing different directions of auditory
attention (Figure 6.1). The following sections describe the different components
of this classification pipeline.

Filterbank CSP (FB-CSP)

Paramount for a well-performing CSP filtering is the selection of the appropriate
frequency band related to the feature at hand (i.e., feature selection). For the
case of AAD, one possibility is filtering in the α-band (Section 1.6). We here,
however, do not want to make an a priori choice of the relevant frequency band(s).
We thus adopt the so-called filterbank CSP (FB-CSP) technique, in which the
EEG is first filtered into different frequency bands, after which the CSP filters
are trained and applied per frequency band [38,170,171]. The filterbank thus
results in B (number of frequency bands) filtered signals xb(t) ∈ RC×1, one
per frequency band b ∈ {1, . . . , B}, for all C EEG channels. The application
of the pre-trained CSP filters per frequency band Wb ∈ RC×K results in B
K-dimensional output signals yb(t) = Wt

bxb(t) ∈ RK×1.
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6 CSP-based decoding of the spatial focus of auditory attention

An alternative extension, which is not pursued here, is the so-called common
spatio-spectral pattern filter, in which the relevant frequency bands are
determined fully data-driven, as a spatio-temporal filter is optimized to be
maximally discriminative [172]. This comes, however, at the cost of an increase
in parameters and related problems with overfitting, in particular for high-
density EEG data as used in this chapter. These problems can partly be
overcome by using more advanced regularization or dimensionality reduction
techniques on the extended spatio-temporal covariance matrices (for example,
PCA [153] or the pre-selection of relevant time lags to introduce sparsity).
Furthermore, a different filter basis than the Dirac basis could be chosen to
reduce the number of parameters or to incorporate expert knowledge [153].

Feature extraction

The outputs of the FB-CSP filtering are now per decision window transformed
into a feature vector f ∈ RKB×1 that can be used for classification. This
is typically done by computing the log-energy over these output signals per
decision window [170], using a pre-defined decision window length τ :

f =




log
(
σ2

1,1
)

...
log
(
σ2
K,1
)

log
(
σ2

1,2
)

...
log
(
σ2
K,B

)




,

with the output energy σ2
k,b of the kth output yk,b(t), for the bth frequency band:

σ2
k,b =

τ∑

t=1
yk,b(t)2

,

where τ is the number of time samples in the decision window. Note that the
decision window length τ determines how much EEG data is used to make
a single decision about the auditory attention of the subject. In a practical
system, this will define the inherent delay to detect switches in attention.

Classification

The feature vector f is used as the input for a binary classifier to determine the
spatial focus of attention. We here adopt Fisher’s LDA, which is traditionally
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6.2 Decoding spatial focus of attention using CSPs

used in combination with CSP filters [170]. In LDA, similarly to CSPs, a linear
filter v ∈ RKB×1 is optimized to provide the most informative projection. In
this case, the most informative projection corresponds to maximizing the in
between class scatter while minimizing the within-class scatter. This again
leads to a GEVD, which can, in this case, be solved analytically, leading to the
following solution [173]:

v = Σ−1
w (µ2 − µ1) , (6.3)

with Σw the covariance matrix of the features f computed across both classes,
and µ1/2 the class (feature) means. Choosing the threshold or bias as the mean
of the LDA projected class means leads to the following decision function:

D(f) = vtf + b,

with v defined in (6.3) and bias

b = −1
2vt(µ1 + µ2) . (6.4)

Finally, f is classified into class one if D(f) > 0 and into class two if D(f) < 0.

6.2.3 Multiclass CSP classification

The classification scheme in Figure 6.1 can be easily extended to a multiclass
scenario, in which multiple directions of auditory attention are combined.
This can be achieved by applying the strategy of Sections 6.2.1 and 6.2.2
in combination with an appropriate coding scheme (e.g., one-vs-one, one-vs-all),
both for the CSP and LDA step, or by approximating a joint diagonalization
of all the class covariance matrices at once in the CSP block [170], and only
applying a coding scheme to the LDA step. Note that the SR approach is also
applicable for various directions/speakers [4, 113].

In this chapter, we adopt the popular one-vs-all approach in BCI research [170].
In this approach, an FB-CSP filter set and LDA classifier are trained for each
direction to discriminate that particular direction from all the other directions.
Given M directions (classes), this means that in (6.2), the RC2 is replaced by
M∑
i=2

RCi , i.e., the sum of the covariance matrices of all classes except class 1.
Correspondingly, an LDA classifier is trained to discriminate direction 1 from
all other directions. This is done for every other direction m ∈ {1, . . . ,M}.
Given M directions (classes), this thus results in M different CSP/LDA pairs.

In the end, for a new window, the posterior probability of each classifier is
computed using the multivariate normal distribution for the likelihood (which
is assumed by LDA) and a uniform prior. To finally determine the correct class,
the maximal posterior probability is taken over the M LDA classifiers.
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6 CSP-based decoding of the spatial focus of auditory attention

6.2.4 CSP classification on an unseen subject

The FB-CSP filters and LDA classifiers can be trained subject-specifically,
meaning that the training is based on EEG data from the actual subject under
test. However, in a neuro-steered hearing device application, this would require
a cumbersome per-user calibration session where the subject is asked to attend
to specific speakers with the intention to collect ground-truth labels to inform
the FB-CSP filter design. To eliminate this requirement, one could train an
AAD model in a subject-independent manner, meaning that data from subjects
other than the test subject are used in the training phase, as done in [74,136]
and Chapter 4 for the SR and CNN approaches. This pre-trained model could
then be ‘pre-installed’ on every neuro-steered hearing device, using it in a
‘plug-and-play’ fashion.

However, it is known from the BCI literature that the FB-CSP method often
fails in such subject-independent settings due to too large differences in the
spatial/spectral EEG patterns across different subjects [174]. To improve
performance, the data from the subject under test can be used to modify
the pre-trained subject-independent FB-CSP filters/LDA classifier. We adopt
here two popular approaches to perform such adaptations, without requiring
ground-truth labels for the data of the unseen test subject:

1. A very effective way of unsupervised updating of an LDA classifier for BCIs
has been proposed in [175]. They conclude that simply updating the bias
of the LDA classifier in (6.4) results in a significant improvement. Here,
we update the bias of the subject-independently trained LDA with the
unlabeled subject-specific features (resulting from the subject-independent
FB-CSP filters), as this only requires the global mean, which is label-
independent:

D(f) = v(SI)tf + b(SS),

with subject-independent coefficients v(SI) as computed in (6.3) on the
data from all other subjects, and the subject-specific bias computed as:

b(SS) = −v(SI)t
µ(SS),

using the global mean µ(SS) over all features f (SS) of the new subject. The
only requirement is that the subject-specific data on which the bias is
updated is approximately balanced over both classes.

2. Lotte et al. [174] found that a subject-independent FB-CSP method
often fails potentially because of the too high spectral subject-to-subject
variability when using many narrow frequency bands. To overcome this
issue, we replace the filterbank setting with a single filter (B = 1) to
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extract and pool a broader frequency range, of which the boundaries will
be determined experimentally. This basically reduces the FB-CSP method
to a CSP classification method with a prior bandpass filtering of the data.
Note that only for the subject-independent experiments (Section 6.4.7),
the FB-CSP method is reduced to a single frequency band. In all other
subject-specific experiments, the FB-CSP approach is used.

6.3 Experiments and evaluation

6.3.1 AAD datasets

We apply the proposed FB-CSP classification method on two different datasets.
The first dataset (Dataset A) has already been used extensively in previous
work, mostly in the context of the SR approach, and consists of 72 minutes of
EEG recordings for each of the 16 normal-hearing subjects, who were instructed
to attend to one of two competing (male) speakers. The competing speakers
were located at −90◦ and +90◦ along the azimuth direction, and there was
no background noise. This dataset is used in all experiments, except those of
Sections 6.4.3 and 6.4.41.

The second dataset (Dataset D) consists of 138 minutes of EEG recordings for
each of the 18 normal-hearing subjects, again instructed to attend to one of two
male speakers, however, now with background babble noise at different SNRs.
Furthermore, per subject, different angular speaker positions are combined (i.e.,
different angular separation between the competing speakers): −90◦ versus
+90◦, +30◦ versus +90◦, −90◦ versus −30◦, and −5◦ versus +5◦ (Figure 6.2).
This second dataset allows us to validate the decoding of the spatial focus of
attention for different angular separations and is used in Sections 6.4.3 and 6.4.4.
Both datasets are recorded using a C = 64-channel BioSemi ActiveTwo system,
using a sampling frequency of 8192 Hz.

6.3.2 Design choices

EEG bandpass filtering

Before CSP filtering, a filterbank is applied to the EEG, consisting of B = 14 8th-
order Butterworth filters. The first filter corresponds to frequency band 1–4 Hz,

1The code for the subject-specific experiments on this dataset are available at https:
//github.com/exporl/spatial-focus-of-attention-csp.
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Figure 6.2: The competing speakers of Dataset D are located at different angular
positions. The azimuth plane is divided into three angular domains, which are used in
the multiclass problem of Section 6.4.4.

the second to 2–6 Hz, the third to 4–8 Hz. This continues, with bands of 4 Hz,
overlapping with 2 Hz, until the last band 26–30 Hz. In this way, a similar range
of frequencies is covered as in [136]. The group delay is compensated for per
filter using the filtfilt-function in MATLAB, resulting in a zero-phase filtering.
Afterwards, the EEG data is downsampled to 64 Hz. No further preprocessing
or artifact rejection is applied, as the CSP filters already implicitly suppress
EEG content that is irrelevant for discrimination between both classes through
a spatial filtering per frequency band.

Covariance matrix estimation

To avoid overfitting in the estimation of the class covariance matrices in (6.2),
the sample covariance matrices in (6.1) are regularized using ridge regression:

R(reg)
C1/2

= αRC1/2 + βI,

with RC1/2 the sample covariance matrix from (6.1) and I ∈ RC×C the identity
matrix. The regularization parameters α and β are not estimated using CV but
are analytically determined (details in [164, 165] or Sections 4.4.2 and 5.2.1).
This method has proven to be superior in various BCI applications and is the
recommended state-of-the-art covariance matrix estimator [38].
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CSP filter design

As described in Section 6.2.1, traditionally, the GEVls are used to select an
appropriate subset of filters, as they represent the relative output energies of
each spatially filtered signal. However, these GEVls can be influenced by outlier
segments with a very high variance, which consecutively can (negatively) affect
the selection of the CSP filters. To avoid this issue, the filters are selected based
on the ratio of median output energies (RMOE) between both classes [170],
taken over all training segments with length equal to the maximal decision
window length that is used in the analysis.

Furthermore, K = 6 CSP filters, corresponding to the 3 most discriminative
filters for one and the other direction, are selected based on the cut-off point on
the plot of sorted RMOEs.

6.3.3 Performance evaluation

The FB-CSP classification pipeline is first tested per subject separately using
ten-fold CV. The data per subject are therefore split into segments of 60 s (30 s
for Dataset D) and randomly shuffled into ten folds. This division into segments
is performed in order to be able to do random shuffling over time, such that
the impact of factors such as fatigue is minimized. Only in Section 6.4.2 and
Appendix 6.A, a leave-one-(story+)speaker-out CV (LOSpO-CV) is performed,
retaining the chronological order of the segments that originate from continuously
recorded trials. For each 60/30 s segment, the mean is set to zero per channel.
Furthermore, each segment is normalized over all channels at once (the Frobenius
norm is set to one) to assign equal weight to each segment in the training phase.
During the testing phase, the normalized 60/30 s segments are split into shorter
sub-segments, referred to as ‘decision windows’ (of which the length will be
varied). The significance level for the accuracy is determined via the inverse
binomial distribution [74].

In Chapter 2, the importance of evaluating AAD algorithms on different decision
window lengths, i.e., the amount of data used to make an AAD decision, has
been stressed. In typical AAD algorithms, a trade-off exists between the decision
window length and accuracy. In Chapter 2, the optimal trade-off is determined
by means of a criterion based on the expected time it takes to perform a stable
gain switch in an attention-steered gain control system. Based on a stochastic
model for the latter, and for any given decision window length, the expected
time to switch the gain between speakers is minimized under the constraint of
guaranteeing a pre-defined level of ‘stability’ to avoid spurious gain switches
due to errors in the AAD decisions. The latter is achieved by increasing the
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number of gain levels, thereby increasing the gain switch duration. The optimal
trade-off point between decision window length and accuracy is found as the
one that leads to the shortest ESD under this model, which is referred to as the
MESD. The MESD is a single-number metric, facilitating the use of statistical
tests to compare different AAD algorithms, as it resolves the inherent trade-off
between decision window length and AAD accuracy. In Chapter 2, we found
that the optimal decision window length selected within the computation of
the MESD consistently shows the importance of short decision window lengths
(< 10 s), allowing faster and more robust switching between speakers despite
the lower AAD accuracy. To determine the accuracies on shorter decision
window lengths, the left-out segments are split into shorter decision windows,
on which the testing routine in Figure 6.1 is applied. Note that the MESD
is a theoretical metric and only provides a theoretical prediction on how an
optimized AAD-based gain control algorithm would track attention switches.
Here, we do not experiment with data containing actual attention switches.

The hyperparameters of the LDA classifier are optimized on the CSP output
energies of the training set using five-fold CV.

6.4 Results and discussion

6.4.1 Comparison with SR approach

The FB-CSP classification method is compared to the current state-of-the-art
AAD method, which adopts the SR approach, on Dataset A. Here, CCA is
used, which is considered to be one of the best decoding methods to date,
outperforming other backward and forward models (Chapter 3). In CCA, a
jointly forward (i.e., mapping the stimulus envelope to the EEG) and backward
(i.e., mapping the EEG to the stimulus envelope) model is trained and applied to
new data [153]. The attended speaker is identified by classifying the difference
between the canonical correlation coefficients of the competing speakers using
an LDA classifier. A forward lag of 1.25 s is used on the speech envelopes, and a
backward lag of 250 ms is used on the EEG as in Chapter 3. The CCA method
is tested using the same ten-fold CV procedure as for the FB-CSP method. The
number of correlation coefficients used in the LDA classification is determined
by an inner ten-fold CV loop. No a priori PCA or change of filter basis as
in [153] is used. The EEG and speech envelopes, which are extracted using a
power-law operation with exponent 0.6 after subband filtering [1], are filtered
between 1–9 Hz (thus mainly without α/β-activity, which was determined to be
optimal for linear SR [1,4, 74,113,134]) and downsampled to 20 Hz. Note that
this method employs an inherently different strategy for AAD than FB-CSP, by

164



6.4 Results and discussion

(in a way) reconstructing the attended speech envelope rather than decoding
the spatial focus of attention.

In Figure 6.3a, it is observed that this SR approach is characterized by a
degrading accuracy for shorter decision window lengths, while the accuracy
of the FB-CSP method barely decreases. It thus clearly outperforms the SR
approach for short decision window lengths. This is one of the most important
properties of this new strategy for AAD to decode the spatial focus with FB-CSP
rather than to reconstruct the stimulus. This effect was also seen in [136] and
Chapter 3, where the spatial focus is decoded based on a CNN. While the
SR approach tries to determine the attended speaker by reconstructing the
attended speech envelope, the FB-CSP method only needs to discriminate
between two angular directions, which is an inherently easier filter design
strategy. Furthermore, in the former, correlation is used as a feature, of which
the estimation is inaccurate when computed on short decision windows, in
particular because the correlation coefficients observed in SR are very small,
making their estimation susceptible to noise. Lastly, as mentioned before, the
FB-CSP method is mainly based on an instantaneous spatial feature (brain
lateralization) rather than a temporal feature.

Note that the accuracy of the FB-CSP method exhibits a higher inter-subject
variability than the SR method. We do not consider this as a major disadvantage
of the FB-CSP method, as, for example, on 1 s decision windows, performance
is still better for all subjects compared to CCA. On average, there is a 20% gap
in accuracy for 1 s decision windows.

For long decision window lengths, however, CCA outperforms the FB-CSP
method. To resolve this trade-off and to (statistically) determine which method
performs better in a context of neuro-steered gain control for hearing devices,
we use the MESD metric, a relevant criterion for AAD that optimizes the
speed-accuracy trade-off and thus resolves the inconclusiveness based on the
performance curve (Chapter 2). Figure 6.3b shows the MESDs per subject, for
both algorithms. It is clear that FB-CSP (median MESD 4.1 s) results in much
faster switching than CCA (median MESD 17.0 s). A Wilcoxon signed-rank test
confirms that there indeed is a significant difference between the MESD for the
FB-CSP versus CCA method (n = 16, p < 0.001). The sustained performance
for short decision window lengths thus results in a superior performance (for
all subjects) of the FB-CSP method over CCA. We note that the MESD is, by
definition, longer than the decision window length (Chapter 2). In particular,
the theoretical lower limit for the MESD is 3 s when using a minimal decision
window length of 1 s2 (Chapter 2).

2The theoretical lower limit of the MESD is equal to 3× the shortest decision window
length that is tested with, as for 100% accuracy, three steps must be taken in the Markov
chain (Chapter 2).
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Figure 6.3: (a) The accuracy (mean ± standard error of the mean across subjects;
Dataset A) of the FB-CSP classification method barely decreases for shorter decision
window lengths and outperforms the SR approach (CCA) for short decision window
lengths. Note that the significance level (‘sign. level’) decreases for shorter decision
window lengths due to the higher number of test windows. (b) The median MESD
(black vertical line) is significantly lower (better) for the FB-CSP method than for
the SR approach (CCA). Each dot represents one subject, the lines connect the same
subjects across methods.
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6.4.2 Comparison with convolutional neural network approach

Vandecappelle et al. [136] used a CNN to perform the same task, i.e., decoding
the spatial focus of attention. This CNN approach has been validated on
the same dataset (Dataset A), but with a different testing procedure to avoid
overfitting on speakers, i.e., LOSpO-CV instead of random CV. To provide
an honest and transparent comparison of our FB-CSP method with this CNN
method, we have cross-validated the performance of the FB-CSP method in
the same way as in [136], at the cost of less training and testing data. While
data of other subjects are included in the training of the CNN method as a
regularization technique [136], this is not done for the FB-CSP method. The
EEG data are filtered between 1–32 Hz, as proposed in [136] and equivalent to
the FB-CSP method.

Given the performances in Figure 6.4, we, first of all, want to stress that the
results of the FB-CSP method for a LOSpO-CV are very similar to using a
random CV (Figure 6.3). This confirms that, as opposed to the CNN method,
our FB-CSP method does not overfit on speakers or stories, which could occur
when using random CV. For the CNN method, the results were significantly
better when not leaving out the speaker and/or story in the training set, which
could be a sign of overfitting [136]. Furthermore, our FB-CSP method does
not perform worse than the CNN method, as a Wilcoxon signed-rank test
(n = 15, p = 0.85, one outlier subject removed) shows no significant difference
based on the MESD (Figure 6.4b).

To conclude, we have identified the following advantages of the FB-CSP method
over the CNN method:

• The FB-CSP method does not perform worse than the CNN method, it
even tends to outperform it.

• The FB-CSP method shows less inter-subject variability and is more
stable (see the standard error of the mean in Figure 6.4a and the spread
in Figure 6.4b).

• The FB-CSP method requires less training for a better performance. The
CNN method uses training data of all (other) subjects, including the test
subject, to avoid overfitting.

• The FB-CSP method has a lower computational complexity, which is
paramount to be applicable in mobile and wireless hearing devices.

167



6 CSP-based decoding of the spatial focus of auditory attention

1 5 10 20 30
50

60

70

80

90

100

FB-CSP
CNN

sign. level

Decision window length [s]

Accuracy [%]

(a)

3 12

3.8 s
FB-CSP

→ excl. 3 outliers

4.1 s
CNN→ excl. 4 outliers

Minimal expected switch duration [s]

(b)

Figure 6.4: (a) The FB-CSP method outperforms the CNN method with on average
≈ 4% in accuracy (mean ± standard error of the mean; Dataset A). (b) The median
MESD is lower for the FB-CSP method than for the CNN method. Note that when
the MESD of a subject is not connected to the corresponding MESD, it corresponds
to an outlier value of the other method.
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6.4.3 Binary FB-CSP classification at various speaker
positions

Whereas in the previous experiments, the competing speakers are located at
−90◦/+90◦, this section treats binary AAD classification at the various speaker
positions that are present in Dataset D. Figure 6.5 shows the performance of the
FB-CSP classification method. For each pair of competing speaker positions,
all babble noise conditions are pooled, and the FB-CSP classification method is
applied. Each pair of positions is thus treated separately, with independently
trained CSP filters and LDA classifiers.

First of all, the results in Figure 6.5a confirm and reproduce the previous results
from Figure 6.3a. The accuracy for the −90◦/+90◦ condition is on average even
10% higher, and there is a smaller inter-subject variability (standard deviation
is on average ≈ 7% over all decision window lengths, while this was ≈ 10% in
Dataset A). A possible explanation for this difference in performance is that due
to the presence of background noise, the spatial cues become more important;
or that the subject has to focus harder, thereby generating stronger neural
responses. A similar advantageous effect of the presence of background noise
for SR was observed in [4].

Furthermore, these results allow analyzing the effect of the angular speaker
separation on the decoding performance. The main result from these
performances is that decoding the spatial focus of attention from the EEG using
the FB-CSP classification method still works for various angular scenarios, and
even when the speakers are positioned very closely together (−5◦/+5◦) or are
positioned at the same side of the head (+30◦/+90◦ and −90◦/−30◦). The
MESDs in Figure 6.5b confirm these findings.

As can be expected, the decoding for the −90◦/+90◦ scenario is easier than
in the other scenarios. Although the decoding will fail when speakers are
co-located at the same spatial position, the FB-CSP method still succeeds in
reliably discriminating between very closely positioned speakers at −5◦/+5◦.
Furthermore, as the results for −5◦/+5◦ are still better than when the competing
speakers are positioned at the same side of the head, it seems that when speakers
are located at different sides of the head, this provides a substantial advantage
in decoding the spatial focus of attention. However, even when speakers are
located at the same side of the head, the method finds sufficient spatio-temporal
discriminative patterns to differentiate between speaker locations.

As an important consequence of these results, the FB-CSP method can be
used as a basic building block for a new AAD strategy in which, for example,
the whole plane along the azimuth direction is split into angular domains.
Depending on the multiclass coding strategy, several FB-CSP filters are then
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Figure 6.5: (a) The FB-CSP classification method performs well for all speaker
separation angles (Dataset D). Again, the accuracy (mean ± standard error of the
mean) of the FB-CSP classification method barely decreases for shorter decision
window lengths. (b) The median MESD is lower (better) for the −90◦/+90◦ than
for the other scenarios. Decoding the spatial focus of attention for speakers that are
positioned at the same side of the head is harder than when they are symmetrically
positioned on different sides of the head.
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combined to locate the attended speaker in the plane and to steer a beamformer
into the correct direction. This AAD strategy is tested in the following section.

6.4.4 Multi-condition and -class FB-CSP classification

Using Dataset D, we can verify whether a multi-condition or -class strategy
is feasible. In the first experiment, all data are pooled, and the FB-CSP
classifier tries to determine whether the left- or right-most speaker is attended.
In the second experiment, all angles are divided into three angular domains
(left/frontal/right) as depicted in Figure 6.2.

Classifying the left/right-most speaker as attended speaker

Instead of training the FB-CSP method for each angular condition separately, all
conditions can be pooled, and the FB-CSP method can be trained to determine
whether the user is listening to the left-most or right-most speaker (in a two-
speaker scenario), independent of where these speakers are positioned in the
plane. As a consequence, a speaker positioned at −30◦ (which is located at the
left side of the head) can be the right-most attended speaker, relative to −90◦,
while +30◦ (which is located at the right of −30◦) can be the left-most attended
speaker, relative to +90◦. This angular condition-independent FB-CSP classifier
could then be used generically to steer a beamformer or to select the attended
speaker, provided the angular positions of the competing speakers are known or
can be detected from a hearing device’s microphone array. To test this, all the
data of Dataset D are pooled and randomly divided into ten folds. Note that a
limitation of this experiment is that the different speaker positions only appear
in fixed pairs and that not every position is combined with all other positions.

Figure 6.6 shows that the accuracy when classifying attention to the left/right-
most speaker is still high (77.7% on average over all decision window lengths),
although lower than when classifying each condition separately (Figure 6.5a).
This confirms that this strategy is viable.

When investigating the MESDs per angular condition (still when classified all
together), it is clear that there are two groups (Table 6.1): the first group
contains the conditions where the competing speakers are located along different
sides of the head and show only a small increase in MESD compared to when
they are classified separately (compare with Figure 6.5b), while there is a larger
increase in MESD when the competing speakers are positioned at the same side
of the head. Furthermore, the first group shows a lower MESD than the latter
one.
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Figure 6.6: These performance curves show that the accuracy (mean ± standard
error of the mean; Dataset D) is still high even when pooling all conditions and only
classifying the attention to the left/right-most speaker, or when dividing the upper
half-plane into three angular domains as in Figure 6.2.

Angular condition MESD LR-most [s] MESD sep. [s]
−5◦/+5◦ 4.53 3.77
−90◦/+90◦ 3.77 3.49
+30◦/+90◦ 5.74 4.20
−90◦/−30◦ 8.22 4.19

Table 6.1: The median MESD is generally lower when the speakers are located on
different sides of the listener. Furthermore, the MESDs for left/right-most classification
(LR-most) are higher compared to the case where each condition is classified separately
(MESD sep.; see Figure 6.5b).
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Classifying between left/frontal/right spatial focus

The intuitive multiclass extension of the binary classification of only two
angular conditions is to classify multiple speaker positions simultaneously,
i.e., determining the spatial focus of attention among several possibilities. A
possible strategy could be to divide the azimuth plane into different angular
domains, which are classified together. In this way, a beamformer could be
steered towards the correct angular domain (without also having to estimate
the direction of arrival (DOA) of each speaker separately from the microphone
recordings). The higher the spatial resolution of the multiclass strategy, the
lower the chance that multiple speakers are present in the same angular domain
(in case of multiple competing speakers), but the higher the misclassification
error. In case multiple speakers are detected within each angular domain,
more angle-specific classifiers or the aforementioned strategy of classifying the
left/right-most classifier (Section 6.4.4) could be used as a complementary
approach.

To test the feasibility of this strategy, we divide the azimuth plane into three
classes based on speaker position as in Figure 6.2. The segments in Dataset
D are divided into these classes accordingly. Note that the same limitation as
before (limited speaker pairs) holds here and that there are no other positions
present than ±90◦ in domains one and three. A one-vs-all coding scheme is
used, which means that there are three binary classifiers trained, which each
classify one angular domain versus the other two domains combined.

Figure 6.6 shows the performance curve for this three-class problem. The
accuracies are very high and show low subject-to-subject variability (standard
deviation ≈ 5.6% over all decision window lengths). Note that the accuracy
decreases faster for shorter decision window lengths than usual. This effect is, to
a lesser extent, also present in the binary case and is amplified here because of
the multiclass nature of this problem. However, the decrease is still very limited
and results in short switch durations (median MESD of 4.32 s over all angular
domains, 4.58 s for switching to domain 1, 4.01 s for switching to domain 2, and
5.13 s for switching to domain 3).

6.4.5 Channel selection

For the FB-CSP method to be applicable in the context of neuro-steered hearing
devices, which is an inherently mobile application, we test the method with a
reduced set of EEG channels. However, we do not adopt a traditional data-driven
feature/channel selection method but take a recording system-based/application-
based point of view. The five electrodes closest to each ear are selected from
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Figure 6.7: The five electrodes of the 64-channel BioSemi system closest to the ear are
selected for the channel selection in Section 6.4.5 (blue). In Section 6.4.8, 38 central
electrodes are chosen (orange).

the 64-channel BioSemi system (see the blue channels on Figure 6.7). This
can be viewed as a representative selection that mimics current behind-the-ear
EEG approaches such as the cEEGrid array [30], which has also been used for
AAD [118]. However, it is noted that our analysis is not fully representative
of an actual cEEGrid setup due to different recording equipment and different
electrode positions. We mainly want to verify whether decoding the spatial
focus of attention is possible while dominantly measuring from the electrodes
on the temporal lobe.

To eliminate the dependence on an ‘external’ or joint reference electrode, the
selected EEG channels are re-referenced using a common average reference
for each ear separately. By averaging and re-referencing per ear separately,
the two sets of ear channels are galvanically isolated, i.e., emulating two
standalone EEG sensor devices that do not have to be connected with a wire.
Furthermore, common average referencing is used to eliminate the need for
selecting a particular reference electrode. Per ear, one random (as CSP filtering
is invariant to the removed channel) re-referenced EEG channel is removed
to avoid rank-deficiency in the EEG covariance matrices, effectively leading
to 4 channels per ear (C = 8). After the removal of the other channels and
the re-referencing, the complete FB-CSP pipeline (Figure 6.1) is retrained and
evaluated using the reduced set of EEG channels.

174



6.4 Results and discussion

Figure 6.8a shows that the decrease in accuracy on Dataset A (binary
classification) when selecting the ear channels is limited to ≈ 5.6% on average.
Furthermore, the median MESD increases from 4.10 s (64 channels) to 4.74 s,
which is statistically significant (n = 16, p < 0.001) but is still limited. Lastly,
from Figure 6.8b, it can be seen that there is only a limited increase in variability
over subjects.

Furthermore, also the performance of CCA is shown, using the same reduced set
of channels and corresponding re-referencing method. The accuracy decreases
on average with ≈ 10% over all decision window lengths (Figure 6.3a) and does
not outperform the FB-CSP method anymore on long decision window lengths.
The median MESD drastically increases as well (Figure 6.8b). The SR approach
thus suffers more from the channel reduction and is completely outperformed
by the FB-CSP method, which is another advantage of the newly proposed
method.

We conclude that decoding the spatial focus of attention with the FB-CSP
method using a reduced set of channels close to the ear could be possible, but
that there is more research required to further validate this approach.

6.4.6 Performance on very short decision window lengths
(< 1 s)

Figure 6.9 shows the performance of the FB-CSP method on Dataset A (binary
classification) for 64 channels and the channels close to the ear (Section 6.4.5)
for decision window lengths below 1 s. Below 1 s, the accuracy further degrades,
with a limited loss of ≈ 5.5% accuracy on 31.25 ms decision windows and ≈ 8.5%
on 15.63 ms decision windows compared to 1 s decision windows. As a result,
for both setups, there still is an acceptable performance when taking quasi-
instantaneous decisions, resulting in a median MESD of 76.5 ms (64 channels)
and 195.0 ms (ear channels) over all subjects. Note that caution is needed when
interpreting these MESD values, as on such short decision window lengths, the
independence assumption of the Markov model underlying the MESD metric is
gravely violated due to the significant autocorrelation values of EEG signals
below 1 s lags. The actual time to achieve a sufficiently stable switch may be
higher than the one predicted by the model behind the MESD metric.

While it may seem surprising that the method can still decode the spatial focus
of attention quasi-instantaneously (< 32 ms) with an accuracy that is better
than chance, we note that CSP only exploits spatial information (differences
between channels) rather than temporal information. Integrating over a longer
time window only helps to achieve a better estimate of the log-energies that are
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Figure 6.8: (a) The mean accuracy (± standard error of the mean) when using only
ten electrodes close to the ear on Dataset A (binary classification) decreases relatively
little compared to the full 64-channel setup. (b) There is a limited increase in median
MESD when selecting ten electrodes for the FB-CSP method, while the CCA method
greatly suffers from the channel reduction (compared to Figure 6.3b).
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Figure 6.9: The performance curves (mean ± standard error of the mean) of the
FB-CSP method degrade below 1 s decision window lengths while demonstrating
acceptable performance even for quasi-instantaneous decisions (Dataset A, binary
classification).

fed to LDA, which is the reason behind the slight increase in performance for
longer decision windows (compared to instantaneous log-energy estimates). In
the case of CSP, the length of the decision window is less critical than in SR
approaches, where temporal modulations in the speech envelopes are exploited
and where the decision window length directly determines how much of this
information is available for discrimination between both speakers. Furthermore,
in the case of FB-CSP, the estimation errors on the log-energies (due to quasi-
instantaneous estimation) can be further compensated by the LDA classifier
by exploiting redundancy in the different filterbands and CSP components to
make a reliable decision. Lastly, although the FB-CSP method makes a decision
based on a few samples, because of the filterbank on the EEG, these samples are
also the result of a weighted integration of previous samples. This means that
effectively more samples than the number of samples in the decision window
are used.

6.4.7 CSP classification on an unseen subject

In the preceding experiments, the FB-CSP filters and LDA classifiers are trained
subject-specifically. Here, we test the viability of the subject-independent

177



6 CSP-based decoding of the spatial focus of auditory attention

approach of Section 6.2.4, to improve the practical applicability of this method
in neuro-steered hearing devices. The same (FB-)CSP classification pipeline
(Figure 6.1) and design choices (Section 6.3.2) as before are used, but now
tested on Dataset A (binary classification) in a LOSuO-CV manner. Per
test subject, the (FB-)CSP filters and LDA classifier are trained on the 15
other subjects. Without using any of the adaptations from Section 6.2.4,
the subject-independent FB-CSP method (SI-FB-CSP) exhibits a large drop
in performance in comparison with the subject-specific FB-CSP method (SS-
FB-CSP) (Figure 6.10a).

Updating the bias as in Section 6.2.4 results in a substantial increase of
performance of ≈ 4% (SI-FB-CSP-bias-update). The second adaptation reduces
the FB-CSP method to a CSP method by using a single frequency band (the β-
band: 12-30 Hz, B = 1), which was experimentally determined (see Section 6.4.8).
Using this CSP method in combination with a bias update of the LDA classifier
results in another increase of accuracy (Figure 6.10a; SI-CSP-bias-update).

The best subject-independent CSP classifier, with a bias update and only one
frequency band (SI-CSP-bias-update), is compared with the subject-specific
FB-CSP classifier (SS-FB-CSP) in Figures 6.10a and 6.10b. Note that using a
single frequency band for the subject-specific method (SS-CSP) results here in
a ≈ 2% decrease in accuracy over all decision window lengths. From the MESD,
we can see that the subject-independent method quite nicely approximates
the performance of the subject-specific method. For two subjects, the subject-
independent method even performs better than the subject-specific FB-CSP
method. However, there still is a significant difference (Wilcoxon signed-rank
test: n = 16, p = 0.0023). Furthermore, from Figure 6.10b, it can be seen that
the subject-independent method has a larger spread, with more negative outlier
values.

We conclude that the subject-independent CSP classification on average
approximates the performance of a subject-specific FB-CSP classifier in terms
of MESD but that there is no guarantee that it will work on every subject.
However, this slightly worse performance is traded for practical applicability, as
no a priori calibration session per user is required.

6.4.8 Decoding mechanisms

Given that it is possible to decode the spatial focus of attention with CSPs, it
is relevant to get a handle on what drives the decoding. To investigate which
frequency bands are most important, the subject-independent FB-CSP pipeline
is trained on all subjects with B = 4 filterbands, corresponding to the main
EEG frequency bands (1–4 Hz (δ), 4–8 Hz (θ), 8–12 Hz (α), and 12–30 Hz (β)).
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Figure 6.10: (a) Using a bias update (SI-FB-CSP-bias-update) and only one frequency
band (SI-CSP-bias-update) in the subject-independent CSP classification method on
Dataset A (binary classification) results in a substantial increase of performance over
the baseline (SI-FB-CSP) (mean± standard error of the mean). (b) The median
MESD of the subject-independent CSP classifier (SI-CSP-bias-update) is very close
to the one of the subject-specific FB-CSP classifier (SS-FB-CSP). There is, however,
a larger spread, with more negatively (higher) outlying MESD values. Note that when
the MESD of a subject is not connected to the corresponding MESD, it corresponds
to an outlier value of the other method.
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The mean LOSuO accuracy over all subjects using a 60 s decision window length
is 79.7%3. To assess the importance of each band, the K = 6 energies related
to each band are left out (while keeping all others), leading to a decrease in
accuracy to 79.0% for the δ-band, 79.3% for θ-band, 79.0% for the α-band, and
73.2% for the β-band. This indicates that the β-band is the most important
band, motivating the choice of this band in Section 6.4.7. Similar conclusions
have been drawn in [136,176]. Furthermore, the performance does not degrade
over time when the attention is sustained (see Appendix 6.A), which has been
reported in the context of α-power lateralization [100].

Figure 6.11 shows the spatial activations of the β-band CSP filters. These
topographic maps show activations mainly above the fronto-temporal cortex,
consistent with the β-band activity found in [136, 176]. However, caution
is needed when interpreting these spatial maps: the CSP filters implement
a so-called ‘backward’ decoding model, which could implicitly also perform
suppression of non-related EEG activity and artifacts, and can thus result in
misleading interpretations [177]. To make the spatial maps as interpretable as
possible, eye (blink) artifacts have been removed with ICA, and muscle artifacts
have been removed with CCA [35], making it impossible for the CSP filters to
reconstruct and exploit them. Note that because of the artifact removal, the
spatial filters shown in Figure 6.11 do not correspond to the ones applied in the
experiments. We merely try to highlight the neural underpinnings of the spatial
filters by removing artifact-related activity before computing the CSP filters. As
such, the topographic plots are not affected by the artifact removal mechanism
that would normally be implicitly present in the CSP filters themselves (i.e., if
such an implicit artifact removal would help in maximizing the discrimination
between the classes). We reiterate that (linear) artifact removal is unnecessary
in the experiments, as the CSP filters can deal with artifacts. Furthermore,
the subject-specific performance on 60 s windows, using only the β-band, with
and without mentioned artifact removal is very similar (77.2% versus 79.0%
respectively), which indicates that the artifacts are not harming nor driving the
CSP-based decoder.

Whether the CSPs exploit neural information or some correlated artifact signal
(e.g., eye artifacts, muscle activity) is impossible to determine. Intuitively, the
CSPs could potentially exploit two specific types of artifact signals: eye artifacts
(for example, lateral movements) and muscle activity (especially subtle directive
ear movements [178]). However, there are several indications that the CSP
filters do not exploit these effects and indeed focus mainly on neural activity.

It is unlikely that the CSPs exploit eye artifacts, as they are primarily contained
3As the data of the subject under test is used in the CSP training (but not in the LDA

training), this accuracy is slightly higher than in Figure 6.10.
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Figure 6.11: The topographic plots of the six spatial β-band CSP filters, computed
on all data of all subjects of Dataset A, show mainly fronto-temporal activity. The
filters of the first row maximize the output energy when left is attended, while those
in the second row maximize the output energy when right is attended. The columns
correspond to different RMOEs.

in the δ- and θ-band, whereas the CSP filters focus on β-band activity. Secondly,
the explicit removal of the eye blinks using ICA does not affect the performance
(80.0% on 60 s decision windows). Furthermore, the decoding also works
well when the competing speakers are located at the same side of the head
(Section 6.4.3) and even when the subjects are asked to fixate on a cross (tested
on a second dataset of [3], results not shown).

As ear movements spectrally (β- and γ-band) overlap with the information
used by the CSPs, it is more difficult to exclude the exploitation of subtle
ear movements [178]. There are, however, two counterindications. Firstly,
the approach also works for speakers located at the same side of the head
(Section 6.4.3). Secondly, when using only the 38 most central electrodes (out
of the 64 channels) furthest away from the ears (see the orange electrodes in
Figure 6.7) and the β-band activity, we still obtain a subject-specific accuracy
(on Dataset A) of 74.1% on 60 s windows. This at least shows that the decoding
still works when only using the central channels, and thus most probably while
not being able to pick up ear muscle activity. Furthermore, the topographic
plots in Figure 6.11 show that the CSP filters also exploit channels that are
rather far away from the ears, even when the channels close to the ears are
included in the data-driven design.
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6.5 Conclusion

We have shown that a (FB-)CSP classification method is capable of decoding
the spatial focus of attention solely based on the EEG. An inherent limitation of
this approach is that it requires the competing speakers to be spatially separated.
Furthermore, this spatial separation needs to be perceived by the user, which is
more difficult for certain hearing-impaired populations [101].

The proposed method has shown to not only outperform the classical SR
approach for AAD in a two-speaker situation but does also not perform worse
than a computationally more complex CNN approach that performs the same
task [136]. It achieves practically viable MESDs below 4 s, which has not been
achieved by any other AAD method so far (Chapter 3). Furthermore, the
proposed method has several important advantages, which are essential for
practical usage in neuro-steered hearing device applications:

1. the FB-CSP method does not require clean speech envelopes (in contrast
to the traditional SR approach), such that the extra (error-prone) speech
separation step for AAD can be avoided,

2. the performance barely decreases for short decision window lengths and
still achieves acceptable performance for quasi-instantaneous decisions,
potentially resulting in very fast and robust switching between speakers,

3. the method still works using a limited set of EEG channels above the ears,

4. the method is capable of discriminating between different angular speaker
positions,

5. the method can be employed within a multi-condition or multiclass strategy
to handle multiple speaker positions at the same time,

6. the method can, provided minor updates, be used in a subject-independent
way, trading a minimum of performance for practical applicability.

We believe that these assets make the FB-CSP method an excellent candidate
and a major step forward towards practical neuro-steered hearing devices.
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Appendices

6.A Decoding the spatial focus during sustained attention

To investigate the AAD accuracy as a function of time during sustained attention,
we use the LOSpO-CV of Section 6.4.2 on Dataset A, allowing to leave out full
continuous recordings. It is important to verify whether decoding the spatial
focus of attention is possible during the full duration of a continuous recording,
while the subject sustains its attention towards a particular speaker/direction.
If the AAD accuracy degrades over time, this means the FB-CSP method
only exploits brain lateralization patterns when the subject initially focuses its
attention, which has been reported in the context of α-power lateralization [100].

Figure 6.A shows the averaged performance over continuous trials and subjects
as a function of time. As Dataset A contains 6-minute continuous recordings
(here referred to as trials) of EEG with sustained attention, the AAD accuracy
is shown per 1 s sliding decision window (no overlap) over these trials. The mean
accuracy, over all decisions, 6-minute trials, and subjects, is equal to 80.0% and
is the same as the accuracy on the 1 s-point in Figure 6.4a. Furthermore, there
is no apparent decrease in performance over time, on the contrary, the accuracy
seems to slightly increase in the first minute, whereafter the accuracy remains
constant. This confirms that the FB-CSP method is capable of decoding the
spatial focus of attention when the attention is sustained, furthermore, with a
similar accuracy as when using random CV (Figure 6.3a).
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Time [s]
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Figure 6.A: The performance (mean accuracy ± standard error of the mean over
subjects and different 6-minute trials; Dataset A) does not degrade as a function of
time when the attention is sustained. A sliding window of 1 s is used.
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7 | Riemannian geometry-based
decoding of the spatial focus
of auditory attention

This chapter is based on S. Geirnaert, T. Francart, and A. Bertrand,
"Riemannian Geometry-Based Decoding of the Directional Focus of
Auditory Attention Using EEG," in Proceedings of the 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1115-1119, 2021. Three extra figures (Figures 7.1, 7.2b
and 7.3) and an extra analysis on a multiclass problem have been added
(Sections 7.2.3 and 7.3.5).

ABSTRACT | In Chapter 6, an alternative paradigm to the SR approach was
proposed, in which the spatial focus of auditory attention is determined using
CSP filtering, solely based on the EEG. In this chapter, we propose Riemannian
geometry-based classification (RGC) as an alternative for this CSP approach,
in which the covariance matrix of a new EEG window is directly classified while
taking its Riemannian structure into account. While the proposed RGC method
performs similarly to the CSP method for short decision lengths (i.e., the
amount of EEG samples used to make a decision), we show that it significantly
outperforms it for longer decision window lengths. Furthermore, we show
how the RGC method is inherently more suited for multiclass problems, when
multiple directions of auditory attention are combined. Therefore, the presented
results imply that the RGC-based decoding of the spatial focus of attention is
one of the best AAD methods to date.
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7 RGC-based decoding of the spatial focus of auditory attention

7.1 Introduction

AAD algorithms traditionally use an SR approach (Chapter 3). This approach,
however, suffers from low decoding accuracy at high speed, i.e., when using few
data to decode the auditory attention (Part I). As these short decision windows
(i.e., the amount of data used to decode the attention) < 10 s are paramount for
the practical applicability of AAD algorithms, for example, when the attention
is switched between two speakers (Chapter 2), the SR approach might be
too slow for practical neuro-steered hearing devices or for conducting research
experiments that require tracking of attention. Furthermore, this approach
requires an error-prone speech separation step to retrieve the individual speech
envelopes from the recorded mixture of speech sources (Section 1.7.2).

As an alternative paradigm, we proposed decoding the spatial focus of auditory
attention in Chapter 6, solely based on the EEG (see also [136]). In this
approach, the CSP filtering method is used to discriminate between different
angular positions of the attended and unattended speaker(s). This CSP
approach significantly outperforms the SR approach on short decision windows.
Furthermore, this paradigm does not require a preceding speech separation
step. As such, this alternative paradigm improves the practical applicability of
neuro-steered hearing devices.

In this chapter, we propose a new AAD algorithm, capitalizing this new paradigm
of decoding the spatial focus of auditory attention but replacing the traditional
CSP filter method with a so-called Riemannian geometry-based classifier (RGC).
Therefore, it can be classified into the ‘nonlinear direct classification’ branch
of the tree of AAD algorithms in Figure 3.1. This technique has become very
popular in the BCI community [38] and outperforms the classical CSP approach
in various BCI applications, particularly in motor imagery paradigms [38,179,
180]. In Section 7.2, we explain how this RGC can be used to classify the spatial
focus of auditory attention. In Section 7.3, we compare the proposed RGC
classifier with the state-of-the-art CSP method and SR approach. Conclusions
are drawn in Section 7.4.

7.2 Riemannian geometry-based classification

In recent years, a new class of RGCs has gained a lot of attention in the BCI
community [38]. Instead of prefiltering the EEG using data-driven filters based
on the EEG covariance structure (as is the case in CSP filtering [170]), the EEG
covariance matrices are classified directly, as it is assumed that all spatial (and
potentially temporal) information concerning different conditions is encoded in
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these covariance matrices [179,180]. However, covariance matrices are symmetric
positive definite (SPD), such that they live on a differentiable Riemannian
manifold rather than in a Euclidean space. RGCs take this specific structure
into account to improve classification performance. Figure 7.1 summarizes the
proposed classification pipeline, which is explained in the following sections.
More details about RGCs and their use in BCIs can be found in [38,179–181].

7.2.1 The tangent space mapping

As covariance matrices live on a differentiable Riemannian manifold, a tangent
space at each point (i.e., covariance matrix) can be computed. Such a tangent
space, containing symmetric matrices, is Euclidean, where Euclidean distances
between tangent vectors approximate Riemannian distances (i.e., distances
between covariance matrices on the Riemannian manifold) of the (projected)
covariance matrices. As traditional classifiers rely on Euclidean metrics, which
conflict with the Riemannian structure of the manifold on which covariance
matrices live, it is preferred to first project all covariance matrices onto the
tangent space of a reference matrix (Figure 7.1). This is the crucial difference
with a straightforward direct classification of covariance matrices, which assumes
a Euclidean structure of the covariance matrices. In the RGC, the intermediate
tangent space mapping (TSM) assures that Euclidean metrics are applicable
(Figure 7.1). For the tangent space to be a good local approximation of the
Riemannian manifold, where Euclidean distances between tangent vectors closely
approximate Riemannian distances between the covariance matrices, a good
choice of the reference point of the TSM is the geometric or Riemannian mean.

Let {Xk, yk}Kk=1 be a training set containing K segments of bandpass filtered
zero-mean EEG data Xk ∈ RC×τ , with C channels and τ time samples, and
with known labels yk ∈ {−1, 1} (for example, attending to the left or right
speaker). The corresponding (sample) covariance matrices are defined as

Rk = 1
τ − 1XkXt

k ∈ RC×C . (7.1)

As in Chapter 6 and Part II, we estimate the covariance matrices using ridge
regression, where the regularization hyperparameter is determined automatically
using the method proposed in [164, 165]. This hyperparameter estimation
method is considered to be the state of the art in BCI research [38].

The geometric or Riemannian mean of these K covariance matrices is then
given by the SPD matrix RG that minimizes the mean squared Riemannian
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distance from each Rk to RG [179]:

RG = G(R1, . . . ,RK) = argmin
R is SPD

K∑

k=1
δ2
R(Rk,R) , (7.2)

where δR(R,S) denotes the Riemannian distance between two SPD matrices R
and S, which can be computed as [181]:

δR(R,S) =
∣∣∣
∣∣∣log

(
R− 1

2 SR− 1
2

)∣∣∣
∣∣∣
F
, (7.3)

with log(·) the matrix-logarithm. Given a diagonalizable matrix A = VΛV−1,
the matrix-logarithm of A is defined as:

log(A) = V log(Λ) V−1, (7.4)

with log(Λ) a diagonal matrix with diagonal elements log(λi). The Riemannian
mean in (7.2) can only be computed in an iterative way, by iteratively computing
the Euclidean mean in the TSM, or can be approximated using log-euclidean
metrics [182]:

RG ≈ exp
(

1
K

K∑

k=1
log(Rk)

)
, (7.5)

where the matrix-exponential exp(·) is defined similarly as the matrix-logarithm
in (7.4). We here use the latter estimation method in (7.5) to efficiently compute
the Riemannian mean covariance matrix.

The normalized TSM of the covariance matrix Rk onto the tangent space at
reference point RG (7.2) is then equal to [179]:

Tk = log
(
R−

1
2

G RkR
− 1

2
G

)
. (7.6)

7.2.2 Riemannian geometry-based classification

The TSM Tk can now be half-vectorized (i.e., a vectorization over the lower-
triangular part only, as it is a symmetric matrix), which leads to the feature
vector fk ∈ R

C(C+1)
2 ×1, representing EEG segment Xk of the training set.

Similarly, for a new test window X(test), the test feature vector can be found
by computing the TSM of its covariance matrix using the Riemannian mean
RG over the training set.

The generated feature vectors with the aforementioned method can then
be classified using any (Euclidean) classifier, trained with the training set
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{fk, yk}Kk=1. We here choose an SVM classifier with a linear kernel. Such
a classifier works well in high-dimensional feature spaces, which we are
dealing with here. Note that combining the TSM with a linear SVM can
be interpreted as applying an SVM with a Riemannian kernel on the half-
vectorized original covariance matrix [180]. The classification algorithm is
summarized in Algorithm 3.

Algorithm 3: Riemannian geometry-based classification
Input: Test EEG window X(test) ∈ RC×τ and given Riemannian mean RG

over a training set and (linear) SVM classifier D(·)
Output: Class label y(test) (e.g., left or right
attended)
1: Bandpass filter X(test) between 12–30 Hz
2: Compute a regularized covariance matrix:

R(test) = 1
τ − 1X(test)X(test)t + δI,

with regularization constant δ computed as in [164,165]
3: Compute the TSM onto Riemannian mean RG:

T(test) = log
(
R−

1
2

G R(test)R−
1
2

G

)

4: Compute the feature vector as the half-vectorization f (test) = vech
(
T(test))

of the TSM
5: Classify: y(test) = sign(D (f))

7.2.3 Multiclass RGC

In Section 6.2.3, we explained how the CSP method can be extended to a
multiclass scenario, i.e., when more than two directions of auditory attention
are possible (see, for example, Figure 6.2). In this method, a coding scheme (i.e.,
one-vs-all) is applied both to the FB-CSP filter and LDA classifier design. More
specifically, given M different directions/classes, per direction m, the GEVD of

the matrix pencil


RCm ,

M∑
i=1
i 6=m

RCi


 needs to be solved, with RCm the sample

covariance matrix across all Xk’s belonging to class Cm. Afterwards, an LDA
classifier is trained similarly, resulting in M different CSP+LDA pairs.
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The proposed RGC method is, however, inherently more suited to extend to
a multiclass scenario. While the feature extraction step in the CSP method
(i.e., the log-energies of the outputs of the CSP filtering (Figure 6.1)) is also
subject to the multiclass one-vs-all coding scheme, this is not the case for the
RGC method. The feature extraction step in the latter (i.e., the TSM and
half-vectorization in Algorithm 3) is decoupled from the multiclass nature of
the problem (with the reference matrix RG the Riemannian mean across all
covariance matrices Rk from all classes). In other words, the multiclass problem
only affects the last classification step in Algorithm 3 (Step 4), where a coding
scheme is applied to the SVM classifier similarly to the multiclass CSP method.
Here, we adopt a one-vs-all coding scheme for the SVM classifier.

7.3 Experiments and results

We compare the proposed RGC method with the CSP method (Chapter 6),
which is the state-of-the-art method for decoding the spatial focus of auditory
attention. In this CSP method, features are generated by applying six spatial
filters that maximize discriminability [170] and are classified with an LDA
classifier. The state-of-the-art SR method (CCA + LDA), as shown in Chapter 3,
is also added as a reference in Section 7.3.4. For the CCA method, the same
preprocessing steps and design choices as in Chapter 6 are used.

7.3.1 AAD datasets

The proposed RGC method is compared with the CSP (and CCA) methods on
two different datasets, similarly to Chapter 6. The first, publicly available
Dataset A contains the EEG of 16 subjects, attending to one of two
simultaneously active competing speakers, located at ±90◦ along the azimuth
direction. Per subject, 72 minutes of data is available. This dataset is used in
Section 7.3.4.

The second dataset (Dataset D) contains the EEG of 18 subjects attending to one
of two competing speakers located at different angular positions (±90◦,+30/+
90◦,−90/−30◦, and ±5◦), with babble background noise at different SNRs.
Similarly to Chapter 6, we use this dataset to compare the RGC and CSP
methods in a multiclass scenario (Section 7.3.5). The EEG in both datasets is
recorded using a C = 64-channel BioSemi ActiveTwo system.
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7.3.2 Design choices

According to the analysis of the filterband importance in the state-of-the-art
CSP approach, the β-band (12–30 Hz) is the most useful EEG frequency band
to decode the spatial focus of attention (Section 6.4.8). As such, both for
the baseline CSP algorithm, as for the proposed RGC method, the EEG is
prefiltered in the β-band using an 8th-order Butterworth filter and downsampled
to 64 Hz (unless mentioned otherwise).

For the CSP method, the other design choices are the same as in Section 6.3.2.

7.3.3 Performance evaluation

The proposed RGC method is tested in a subject-specific way using ten-fold CV.
Therefore, the 72 (Dataset A)/138 (Dataset D) minutes of EEG data per subject
are split into 60 s (Dataset A)/30 s (Dataset D) segments, which are randomly
distributed across ten folds. Note that these 60/30 s segments are normalized
by setting the mean per channel to zero, as well as setting the Frobenius norm
across all channels to one. The decision window length is defined as the length
of the EEG window over which a single AAD decision is made (this usually
results in a trade-off between AAD accuracy and decision latency (Chapter 2)).
In the case of our RGC framework, the decision window length is defined by
the number of samples τ over which the covariance matrices are estimated. To
evaluate the AAD accuracy for various decision window lengths, all 60/30 s
segments are split into shorter decision windows. The Riemannian mean in (7.2)
and linear SVM are retrained for every decision window length. The significance
level for above-chance AAD accuracy is computed based on the inverse binomial
distribution [74]. Note that shorter decision window lengths result in more
decisions over the test fold, resulting in a lower significance level. A similar
ten-fold CV procedure is used for the CSP and CCA method.

Evaluating the AAD accuracy across different decision window lengths is
important, for example, in the context of detecting switches in auditory attention.
To resolve the traditional trade-off between accuracy and decision window length,
the MESD metric [s] is used, as proposed in Chapter 2. This single-number
AAD performance metric quantifies the minimal expected time it takes to switch
the gain from one speaker to another, following a switch in attention, based on
an optimized stochastic model of a robust (i.e., assuring stable operation above
a pre-defined comfort level) attention-steered gain control system.
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7.3.4 Binary RGC

Figure 7.2a shows the AAD accuracies as a function of decision window length
for the RGC, CSP, and CCA method on the binary left/right classification
problem on Dataset A. Below 1 s decision window lengths (i.e., using τ = 64
samples at fs = 64 Hz), the RGC and CSP methods have very similar accuracies.
Between 1 s and 5 s, there is a much faster increase in performance for the RGC
method than for the CSP method. This is mostly due to the quickly improving
covariance matrix estimation (required for the RGC method) at these shorter
decision window lengths. Indeed, as more data become available for increasing
decision window lengths to estimate the covariance matrix, less regularization is
required, introducing a smaller bias on the estimated covariance matrix. There
is no similar effect for the CSP method, as there is no direct covariance matrix
estimation involved. The RGC method could potentially be improved on these
very short decision windows by applying an intelligent dimensionality reduction
or feature selection method (see Section 8.2). Beyond 5 s, the performance levels
off in both cases, and the RGC method outperforms the CSP method with
≈ 6%.

As is also shown in Chapter 6, the traditional SR method (CCA) outperforms the
CSP method for the - less practical - long decision windows > 20 s. As the RGC
method outperforms the CSP method on almost all decision window lengths,
the region in which the CCA method is the best has decreased to the range
> 40 s. If one would construct an AAD algorithm combining both approaches
(RGC + CCA), the envelope would largely, and in the most important regions,
be dominated by the RGC method.

The per-subject MESD values (Figure 7.2b) are all < 5 s (except for two outliers
due to poorer performing subjects with MESDs > 5 s, but < 24 s), with median
MESD = 2.26 s and [25, 75]%-quantiles = [2.13, 2.62]s. Note that the MESD
values of the CCA method are all above 5 s (due to poor performance at short
decision windows, median MESD = 16.07 s). The median MESD of the CSP
method is = 2.34 s, with [25, 75]%-quantiles = [2.12, 2.61]s. For the CSP and
RGC method, as there are still relatively high accuracies on the very short
decision windows, the optimal trade-off point between AAD accuracy and
decision window length is very often located at the shortest decision window
lengths. As both methods have very similar accuracies there (Figure 7.2a), the
MESD values are also very similar across both methods, with similar median
values. Furthermore, a paired Wilcoxon signed-rank test (n = 16, p = 0.0627)
shows no significant difference between both methods.
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Figure 7.2: (a) The mean AAD accuracy across subjects (± standard deviation across
subjects; Dataset A) shows that the RGC method outperforms the CSP approach on
almost all decision window lengths but exhibits a faster decrease in performance on
very short decision window lengths, resulting in very similar performances on 531 ms
decision windows. (b) The per-subject MESD values (each dot = one subject) are very
similar across the CSP and RGC methods, as they are mostly taken on the shortest
decision window lengths. CCA is omitted, as all MESD values for this method are
above 5 s. The median MESD across subjects is indicated with a bar, and the gray
lines connect the same subjects across methods. Outlying subjects are indicated by
(+x).
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7.3.5 Multiclass RGC: classifying between left/frontal/right
spatial focus

We now compare the multiclass RGC method discussed in Section 7.2.3 with
the (FB-)CSP method on Dataset D in a similar experiment as in Section 6.4.4.
The azimuth plane is divided into three zones that correspond to the three to-
be-classified classes: left, frontal, or right attended (Figure 6.2). In all methods,
a one-vs-all coding scheme is used.

Figure 7.3 shows the performances curves of the multiclass RGC method, the
multiclass CSP method only using the β-band (as for the RGC method), and the
multiclass FB-CSP method as proposed in Section 6.4.4. The FB-CSP method
is also shown here (with the same performance as in Figure 6.6), as it gives a
significant improvement over the CSP method using only the β-band. The trend
of the RGC method is similar to the one in Section 7.3.4: it clearly outperforms
the (FB-)CSP method on the longer decision window lengths, achieving up
to 92% accuracy, but has a decreasing performance on very short decision
windows. Beyond 5 s, the RGC method outperforms the FB-CSP method with
≈ 10% and the CSP method using only the β-band with ≈ 16%, and has a
smaller standard deviation. As expected, this difference is even larger than
in Section 7.3.4, given that the RGC method is inherently more suited for a
multiclass scenario than the CSP method(s) (Section 7.2.3). The median MESD,
over all angular domains, is 4.42 s (RGC), 4.58 s (CSP with β-band), and 4.32 s
(FB-CSP). While a paired Wilcoxon signed-rank test (n = 18, p = 0.27) shows
no significant difference based on the MESD between the RGC and FB-CSP
method, there is a significant difference (n = 18, p = 0.0016) with the CSP
method only using the β-band (i.e., the same frequency information as the RGC
method).

7.4 Discussions and conclusion

We have shown that the proposed RGC is capable of outperforming the state-of-
the-art CSP method to decode the spatial focus of auditory attention by 6% on
most decision window lengths on a binary classification task and even by 10% to
16% on a multiclass problem. However, two limitations are to be noted. Firstly,
the RGC method performs similarly to the CSP method on very short decision
windows (Figures 7.2 and 7.3), due to the worse covariance matrix estimation on
small sample sizes. As the MESD values indicate that these very short decision
windows are most relevant in the context of attention switching, the RGC
method achieves a similar overall MESD as the CSP method. Furthermore, this
RGC method has, due to the TSM in (7.6), a higher computational load than
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Figure 7.3: The RGC method outperforms the CSP (with β-band only) and FB-CSP
methods even more on the multiclass problem, i.e., when classifying attention to
one out of three angular domains (mean AAD accuracy ± standard deviation across
subjects; Dataset D).

applying a simple spatial filter. Both limitations need to be considered for the
real-time AAD application in neuro-steered hearing devices.

To conclude, the large increase in AAD accuracy compared to the state-of-the-
art CSP method makes the proposed method a good candidate to decode the
auditory attention, given that it also outperforms the SR (i.e., CCA) approach
for decision window lengths below 40 s. This makes the RGC-based decoding of
the spatial focus of auditory attention one of the best AAD methods to date.
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8 | Conclusion

8.1 Main findings and implications

In this section, we summarize the main findings and implications of the presented
work per part of the thesis.

8.1.1 Part I: Evaluation and comparison of AAD algorithms

In Chapter 2, we have developed a novel performance metric for AAD based on
the notion of a stable switch in an attention-steered adaptive gain control system,
following a switch in auditory attention of the user. We have modeled this gain
control system as a Markov chain, where a stable switch corresponds to a gain
switch to a predefined comfort level. This Markov chain is then optimized to
provide a comfortable listening experience and a minimal gain switch duration.
While this mathematical model implicitly assumes, for example, independence
of AAD decisions (which is not the case in practice, especially not for short
decision windows) and is not based on actual switches in attention, it results in
an elegant and easy-to-compute AAD performance metric that quantifies the
average duration of a stable gain switch - the MESD. As such, it provides a tool
that enables easy and statistical evaluation and comparison of AAD algorithms
across different decision window lengths based on a relevant and interpretable
criterion for AAD. The MESD performance metric has shown to be a crucial
tool in Chapter 3 and has been used throughout the thesis to compare AAD
algorithms. As such, the MESD realizes one of the first main research objectives
outlined in Section 1.9.1.
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Apart from providing a performance metric, the (development of the) MESD
metric gives a few additional insights and by-products. First, it underlines the
importance of evaluating a new AAD algorithm at different decision window
lengths. While SR-based algorithms typically exhibit a speed-accuracy trade-
off, this is much less pronounced in algorithms that decode the spatial focus
of attention, as shown in Part III. The analysis of an algorithm at different
decision window lengths is, therefore, crucial to identify the interesting operating
regions of an algorithm. For example, while the traditional SR algorithm is less
interesting to provide online, fast AAD decisions (as evidenced by the MESD), it
could be interesting to provide decisions on a slower time scale (see Section 8.2).
Related to this analysis, the MESD stresses the importance of short decision
windows (i.e., making fast decisions) to detect switches in attention. While
the MESD metric is not based on actual attention switches, the fast detection
of such a switch always needs to be kept in mind when designing a new AAD
algorithm. It is, for example, relatively easy to design an algorithm that has
a very high accuracy on short decision windows by implementing some post-
processing smoothing procedure across AAD decisions1 to correct for errors.
However, such an algorithm would result in substantial detection delays of AAD
switches and would thus seriously hamper the practical applicability of such
an algorithm. For every AAD algorithm, it is thus important to disentangle
the decision window length as used in the AAD algorithm from the effective
decision window length that determines the temporal resolution of the AAD
decisions, as well as to determine the expected decoding delay on a switch in
attention. Lastly, as a by-product, the MESD results in an optimal gain control
system (i.e., an optimal number of states and working point of the algorithm)
with only a few tunable parameters such as the comfort and confidence level.
Such a system could be used as a basis for a practical gain control system (see
Section 8.2).

Based on the MESD performance metric, we have been able to establish in
Chapter 3 that CCA was the best AAD algorithm (at least up to the year
2020), not only because it outperforms other linear SR-based algorithms but,
moreover, because it proved to be stable across different independent datasets.
However, this algorithm is supervised and fixed in time, necessitating the
development of time-adaptive unsupervised decoders, which we have pursued in
Part II. Furthermore, the MESD also indicates that even the CCA algorithm is
too slow to detect attention switches (i.e., a delay around 15 s) in a practical
neuro-steered hearing device. This implies that faster and more accurate AAD
algorithms are required. Decoding the spatial focus of auditory attention (using
a CNN) showed to be very promising towards these most important short
decision window lengths. A third conclusion from this study is that DNN-based

1This would, furthermore, gravely undermine the independence assumption in the MESD
metric.
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methods are hard to replicate on different AAD datasets. A possible explanation
is the limited size of the benchmark datasets in relation to the complexity of
these systems but also the possible overtuning and overfitting to a particular
dataset. These DNN methods are even more capable of (unwanted) latching
onto experimental conditions, speech stimuli, equipment, etc. However, these
(novel) DNN methods for AAD should not be discarded, given the nonlinear
processing and additional complexity they can provide2. Therefore, we propose
a few guidelines to take into consideration when evaluating AAD algorithms
(in general):

• Use a large enough (training) dataset. While the required size of a
training set depends on the complexity of the trained model, current AAD
datasets might be too small for the design of, for example, DNN models.
Furthermore, ‘size’ should not only be interpreted quantitatively but also
qualitatively: enough variation (for example, concerning artifacts) should
be present.

• A strict and proper CV scheme needs to be used. A random CV needs
to be avoided for subject-specific AAD algorithms, especially for DNN
models. This is crucial to avoid a too large similarity between the training
and test set and thus to assure generalization to new data. The training
and test sets need to be time-independent, potentially with extended
breaks in between. Validation in a subject-independent manner is an
alternative way to verify that (cross-subject) generalization is possible.
The latter would assure that within-subject generalization across different
recording sessions is also possible [184].

• The AAD algorithm needs to be evaluated on independent datasets,
preferably with differences in setup, protocol, etc. One dataset could be
used to design the AAD algorithm (for example, the DNN architecture),
a second one to afterwards test the algorithm with minimal changes in
the parameter settings. This is important to exclude overfitting (of DNN
architectures) on specific datasets and, therefore, to assure generalizability
to new data from different users in potentially different setups.

A more general overview of different methodological considerations when
(linearly) modeling neural responses to speech can be found in [185]. The
proper evaluation of AAD algorithms for more complex DNN methods should,
of course, be viewed in the more general trend towards the proper design and
evaluation of DNNs.

2Some argue, however, that ‘complexity’ of models is a more relevant way of thinking
about neural en-/decoding models than linear versus nonlinear models, also, vis-à-vis the
(research) goals [183].
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8.1.2 Part II: Unsupervised AAD

In Chapter 4, we have developed a procedure for unsupervised training of a
stimulus decoder for AAD based on a batch of unlabeled training data by
iteratively updating the decoder based on its own predictions. This iterative
relabeling resulted in a self-leveraging effect, which we have explained by
developing a mathematical model for the updating procedure. This allows
interpreting the developed algorithm as a fixed-point iteration, converging after
approximately five iterations. Furthermore, the mathematical model allowed to
accurately predict the accuracy of the resulting unsupervised decoder from the
supervised decoder.

The resulting stimulus decoder from the unsupervised training procedure,
starting from a random initial decoder, outperforms a subject-independent
decoder trained on EEG data from other subjects (which thus also does not
require attention labels on the test subject). Furthermore, we have shown how
the unsupervised subject-specific updating could be combined with subject-
independent information in a transfer learning approach, resulting in a decoder
that even approximates the performance of a supervised subject-specific decoder.
This batch training procedure then laid the foundation of the time-adaptive
extension that we have developed in Chapter 5.

In this time-adaptive approach, we assume that EEG and audio data segments
are continuously streaming in as in a practical neuro-steered hearing device.
We have compared a sliding window implementation, which mimics the batch
approach in Chapter 4, with a recursive one and have shown that this simple
and efficient single-shot recursive updating scheme is most optimal. From the
results, it was clear that this approach has the potential to outperform a static
supervised decoder when conditions and situations (such as electrodes that are
disconnected) change. This unsupervised time-adaptive AAD algorithm could
in principle be employed in a plug-and-play fashion, pre-implemented on an
off-the-shelf hearing device. This AAD algorithm would then on-the-fly train
itself from scratch during operation and would be tuned to the end-user after
20 min, after which it would continuously update. While the low accuracy of a
stimulus decoder on short decision windows reduces the potentially high impact
of this unsupervised time-adaptive algorithm in making AAD decisions, it can
still be used to provide labels for another algorithm and to enable neurofeedback
effects (see Section 8.2). As such, we consider this algorithm a crucial step
forward in the online application of AAD in neuro-steered hearing devices,
providing a solution for one of the main signal processing-related challenges
outlined in the research objectives in Section 1.9.1.
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8.1.3 Part III: Decoding the spatial focus of auditory
attention

As established in [136] and Chapter 3, decoding the spatial focus of auditory
attention is very promising due to its ability to achieve high accuracies at
very short decision window lengths. In Part III, we have built upon this
alternative AAD paradigm with a computationally efficient linear CSP algorithm
(Chapter 6) and its nonlinear RGC extension (Chapter 7), which both greatly
outperformed the CCA SR algorithm at (very) short decision times. Moreover,
the RGC extension provided an additional significant improvement for the longer
decision window lengths, especially for a three-class scenario with multiple
possible angular directions. The CSP method performs at least as well as
the CNN method in [136] but requires less training data and computational
resources, making it the preferred choice according to Occam’s razor. We have,
furthermore, evaluated the CSP method in various scenarios, i.e., with a reduced
amount of EEG channels around the ear, in a subject-independent context using
a subject-specific but unsupervised bias update, with different speaker positions
and babble noise levels, and in a three-class scenario, classifying auditory
attention to a left, frontal, or right angular domain, or only detecting whether
the left- or right-most speaker is attended. All these experiments underline
the practical applicability of the CSP algorithm. Lastly, these methods do not
require the original speech signals of the competing speakers for AAD itself,
such that they are not prone to errors in the speaker separation step.

We have also tried to get a grasp on the decoding mechanisms of CSP-based
decoding of the spatial focus of attention. Our experiments have shown that
mainly the fronto-temporal β-band activity is the driving force. Furthermore,
we have tried to rule out the possibility that eye- or ear-activity confounds
are driving the decoding. While we have several arguments based on the
experimental design, artifact removal, and channel selection, it is, however,
impossible to completely rule out these confounds (see Section 8.2).

The very low MESDs resulting from these methods show that the CSP and RGC
approaches are excellent candidates as fast and accurate decision-making AAD
algorithms that allow fast switching between speakers, potentially resolving
the second main signal processing-related challenge discussed in Section 1.9.1.
Therefore, they hold great potential to be implemented in practical neuro-steered
hearing devices. To be able to realize this potential, several next steps need to
be taken, as outlined in Section 8.2.
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8.2 Future directions

In this thesis, we have made several contributions to the different signal
processing-related challenges for AAD in neuro-steered hearing devices,
especially towards time-adaptive, unsupervised, fast, and accurate AAD
algorithms. Nevertheless, several additional steps need to be taken to realize
practical neuro-steered hearing devices. In this section, we discuss possible
future research directions starting from the work in this PhD thesis.

8.2.1 Ecological validity

As discussed in Section 1.7.4, AAD algorithms need to be validated in realistic
listening scenarios that are encountered in the real world (ecological validity)
and on the targeted end-user: the hearing-impaired listener. Therefore, we
propose the following next steps.

MESD validation on actual switches in attention

As explained in Chapter 2, the MESD performance metric is based on a
theoretical model of an adaptive gain control system, in which the switch
duration can be quantified. Therefore, the MESD is a theoretical metric that
is not based on actual switches in auditory attention. A next step is thus to
validate the theoretical MESD based on data that contain actual (spontaneous)
switches in auditory attention, especially when the working point of the AAD
algorithm is situated at very short decision window lengths (as with the CSP
and RGC methods) and the independence assumption in the Markov chain
could be violated.

Validation of CSP method in various listening scenarios

Recent experiments show that the CSP method does not work on every dataset
or subject. For example, on Dataset B, similarly to [136] in Chapter 3, the CSP
method does not perform better than chance level. A similar effect is present on
50% of the 44 subjects of the AAD dataset in [129] (containing normal-hearing
and hearing-impaired listeners, however, seemingly being unrelated to it). A
possible explanation is that the datasets used in Chapter 6 contain male-male
speakers, while the datasets on which the CSP method fails contain male-
female speakers (see also Table 1.3). In the latter datasets, binaural, spatial
cues could be less important to focus attention on one of the two competing
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speakers, while in the former, spatial hearing becomes much more important
to provide spatial release from masking. This could explain why the spatial
focus of auditory attention is not decodable in the mentioned datasets. This
hypothesis is supported by the work in [57–60,62], suggesting that the effect of
spatial release from masking becomes less important when the competing sound
sources can be easily separated, for example, based on monaural cues such as
differences in fundamental frequency. Furthermore, recent pilot experiments
have shown there might be a significant time-dependency in the CSP decoding,
i.e., good performances are only obtained when the algorithm is trained on
data close to the test data (in time). This effect seems to be especially present
when the amount of training data is low, pointing towards an overfitting effect.
Therefore, several new experiments are required to further investigate the effects
on the CSP decoding of potential eye- and ear-artifacts, different fundamental
frequencies of the competing speech signals, the amount of training data, and
the time-dependency of the test on training data. For the latter, several transfer
learning and domain adaptation solutions have already been proposed and could
be explored in this context [38,175,186–189].

Lastly, as similarly done for the SR algorithm (Section 1.7.4), decoding the
spatial focus of auditory attention using the CSP or RGC method should be
further evaluated with multiple competing speakers, with (spontaneous) switches
in attention, different noise types, and in a hearing-impaired population. The
outcomes of these experiments will provide essential information on how and
when decoding of the spatial focus of attention can be used.

8.2.2 Integration in a neuro-steered hearing device

Adaptive gain control system based on the MESD

As explained in Chapter 2, the MESD performance metric also results in an
optimally designed Markov chain as a model for an adaptive gain control system.
Such a gain control system is paramount in the online application of an AAD
algorithm in a neuro-steered hearing device. Therefore, the optimally designed
Markov chain from the MESD could be used to initialize a user-specific adaptive
gain control system. This would then require some gain interpolation between
the different states and finding the optimal settings (comfort level, confidence
level, and minimal number of states) for the end-user. Therefore, it could be
interesting to investigate the desired parameter settings (such as the comfort
level) and final gain control experience in a cohort of (potentially hearing-
impaired) subjects. Furthermore, the rate of gain change can be controlled via
the number of states in the Markov chain. Given the desired parameters, this
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number of states could be adapted over time using some confidence estimation
in the decision of the AAD algorithm.

Speaker separation and enhancement for CSP decoding

Similar to the SR algorithm in Section 1.7.2, the CSP (or RGC) algorithm should
be evaluated in combination with the speaker separation and enhancement
step before the adaptive gain change. Simultaneously, the limits in terms of
spatial resolution with the CSP algorithm should be investigated: how many
angular domains can the algorithm handle, and what is the most optimal
decoding strategy? The decoded attended direction could then be used to steer
a beamformer to the decoded location. Note that preserving binaural cues in
the beamforming is crucial, as the CSP algorithm inherently exploits spatial
hearing [190,191].

Neurofeedback

Similar to other BCI applications, neurofeedback could further enhance the
performance of AAD, as already indicated by the experiments in [3]. This
essentially means that we also consider human learning as an essential
cornerstone of neuro-steered hearing devices (Figure 1.6). To enable such
neurofeedback effects, in which the user learns to control and regulate its own
neural activity [192,193], a real-time AAD system is required to close the loop.
An excellent candidate to feed back the AAD decisions to the user would be
the adaptive gain control system (based on the Markov chain).

The work in Part II, however, allows going beyond a ‘one-sided’ neurofeedback
scheme, where only the user learns to control a (static) AAD decision system
through its neural activity. By also allowing the AAD algorithm to automatically
adapt to the non-stationary neural signals of the user (for example, as the
result of neurofeedback learning), a potentially stronger effect could be achieved.
However, to obtain the desired enhanced performance from the interplay between
a learning human and adapting algorithm, the rate of learning in the time-
adaptive algorithm should be tuned to the human learning [38, 194]. Lastly,
closing the loop could not only enable neurofeedback effects from human learning
but could also allow decoding error-related potentials, i.e., decoding whether
an error in gain change has been perceived by the user (different from its
intention) [38].
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8.2.3 EEG miniaturization and wearability effects

Data-driven channel selection for CSP decoding

In Chapter 6, we took a recording system-based point of view to test the
CSP method on a reduced set of EEG channels by selecting the electrodes
closest to the ears, emulating a cEEGrid array. While further tests with
mobile setups, for example, using the actual cEEGrid array and in natural
environments [3, 124] are important to probe the practical applicability, also
a data-driven channel selection approach can be adopted. In [195], we3 have
developed a group-sparse channel selection method specifically for generalized
Rayleigh quotient/GEVD problems as used in the design of the CSP-based
decoder in Chapter 6. Such a channel selection could not only be used to
optimally position miniaturized EEG sensors but also to provide insight into
the neural decoding process. Furthermore, the reduced number of channels
could result in a necessary dimensionality reduction to improve RGC-based
decoding (see below).

8.2.4 Fast and accurate AAD algorithms

Improved and extended RGC-based decoding of the spatial focus of
attention

While the RGC-based decoding of the spatial focus of attention in Chapter 7
shows great promise as an AAD algorithm, it has not yet been as extensively
validated as the CSP algorithm in Chapter 6. Therefore, this algorithm should
also be evaluated in a more mobile context, when generalizing to unseen subjects,
and with the extensions proposed in Section 8.2.1. We, however, do not expect
surprising results, given its similarity to CSP decoding. Moreover, to fully
exploit the potential of the RGC-based decoding, the performance on very short
decision window lengths should be improved. Potential solutions are to apply
advanced regularization techniques in the covariance matrix estimation, for
example, through a smart channel selection that could be re-used from the
channel selection method in [195], or feature selection methods to improve the
SVM classification.

3S. Geirnaert is joint first author of this journal article [195]. It is not included in this
thesis as it is considered to be mostly peripheral to the scope of the thesis.
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8.2.5 Time-adaptive AAD algorithms

Unsupervised CSP/RGC decoding

As extensively shown throughout this thesis, the SR algorithm does not perform
well enough on very short decision window lengths for attention switch detection
in neuro-steered hearing devices. This reduces the relevance of the time-adaptive,
unsupervised stimulus decoder from Part II as the ‘decision-maker’ in AAD.
Therefore, it is crucial to investigate a similar time-adaptive, unsupervised
CSP/RGC decoding. The most elegant solution is to perform a similar iterative
self-adapting approach on the CSP and LDA decoders. It is, however, unsure
that the same self-leveraging effect will be present, as indicated in [38]. Therefore,
an alternative and potentially easier approach is to use the time-adaptive,
unsupervised stimulus decoder from Part II to provide reliable labels to update
the CSP algorithm. This updating could be performed on longer updating
segments, as the decoder updating rate can be much slower than the AAD
decision rate (also in light of, for example, neurofeedback effects). Given that
the SR algorithm is still one of the best AAD algorithms on very long decision
windows (> 40 s, see Chapter 7), this could result in the ultimate combination of
the time-adaptive, unsupervised, slow but accurate stimulus decoder to provide
labels in order to update the supervised, fast and accurate CSP/RGC decoding
algorithm, which then acts as the ‘decision-maker’.

8.3 Final thoughts

While Section 8.2 shows that several additional steps need to be taken towards
the realization of practical neuro-steered hearing devices, in this thesis, we
have contributed different important pieces of the puzzle of AAD. Building
upon the advances made in this thesis, a neuro-steered hearing device as in
Figure 1.6 could potentially be built, encompassing a plug-and-play, time-
adaptive, unsupervised, fast, and accurate AAD algorithm, properly integrated
with a low-latency speaker separation and enhancement algorithm, a (Markov
chain-based) adaptive gain control system, and a wearable, miniaturized EEG
system. Therefore, I am hopeful that we can create a smart HA for Herman
that allows him to enjoy the Christmas family dinner once again and break the
pattern of loneliness.
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A | Listening to chaos: could you
control a hearing aid with your
brain?

This chapter contains an article for the general public about the thesis
topic of AAD for neuro-steered hearing devices, initially written in Dutch
for the Flemish science magazine EOS. It has been adapted and translated
to English for the Leuven.AI-stories blog and the BioVox newsletter.

As the number of people struggling with hearing impairment is on the rise,
KU Leuven researchers are attempting to develop smart hearing aids that use
brainwaves to help users home in on specific conversations, cutting through the
noise in chaotic situations like a busy family dinner.
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Christmas Eve. The 76-year-old Johan is having a family dinner with his children
and grandchildren. Although he is very happy that everyone is together, he
feels lonely.

Johan suffers from hearing loss. He wears a hearing aid that amplifies sounds.
Unfortunately, his hearing aid doesn’t know which person he wants to listen to
and the ensuing auditory chaos causes Johan to switch off his hearing aid.

Since he’s unable to follow any distinct conversations, his experience, though
in a room full of family, is one of isolation. This is what author Helen Keller
meant when she said that "blindness isolates people from things, while deafness
isolates people from people."

‘Cocktail party’ chaos

Like Johan, one in ten Belgians suffer from hearing loss. According to the
World Health Organization, this number will increase in the coming decades
partly due to the aging population, reaching one in four by 2050. Smart hearing
aids that are able to listen in a targeted manner are therefore of paramount
importance for the well-being of millions.

Unfortunately, current hearing aids do not work well in cocktail party situations,
when several people are speaking at the same time. At receptions, parties,
and dinner tables, the hearing aid does not know to which speaker the user
wants to listen and simply amplifies all speakers equally, preventing the user
from following any conversation. Perhaps you too – even without hearing loss –
experience these difficulties in such situations?

Finding out who Johan wants to listen to

A possible solution to Johan’s problem is to simply amplify the speaker closest
to him or the person he’s looking at. But if Johan wants to eavesdrop on what
his partner at the other end of the table is saying about him (something he
hasn’t been able to do for years), this approach would fail.

What if you could read directly into Johan’s brain who he wants to listen to?
Only there can we find the correct information. This seemingly impossible
feat is precisely what our interdisciplinary team at KU Leuven is working
on. Measuring the electrical activity of the brain via an electroencephalogram
(EEG), using sensors placed on the skull, we can use these data to find out who
Johan wants to listen to.
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We measure the electrical activity of the brain via the electroencephalogram.

Our team is designing algorithms to read the EEG and determine what a person
wants to focus on. For example, you can use artificial intelligence to reconstruct
features of the speech signal that a user pays attention to. By matching those
reconstructed features from the EEG with all the speech signals that the hearing
aid picks up, you can identify the correct speaker. The hearing aid can then
suppress all other conversations and amplify the right conversation.

At KU Leuven, we are developing algorithms to find out who Johan wants to listen to
from his brain waves. This way, we can amplify the right speaker.
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Where’s that sound coming from?

Problem solved? Not quite. The EEG can be compared to a blurry video (see
also Can you read thoughts from EEG?). The relevant brain activity is buried
under all kinds of other activity, with countless processes going on at any given
moment. To find out what is happening on that blurry video, we need enough
footage – at least 30 seconds. Unfortunately, that’s too slow for Johan, who’ll
miss what his partner is saying right this minute.

Can you read thoughts from EEG? We reconstruct features of the
speech signal to which someone is paying attention from the brain waves.
Can we also find out what that person is saying? Isn’t it even possible
to decipher what you’re thinking?

Luckily not. EEG is a non-invasive technique. This means that we
measure the signals on the skull and not under the skull. As a result,
there is a significant distance between the EEG sensors and the neurons
– the basic cells of our brains –, which cause electrical activity by firing.
In addition, the cerebrospinal fluid and the skull attenuate this activity.
These processes are precisely what makes the EEG so ‘blurred’. Therefore,
I am convinced that it is fundamentally very difficult to reconstruct speech
or language from EEG.

To overcome this delay, we have developed a new technique that based on the
brain patterns determines the spatial direction of Johan’s attention. Colleagues
at Columbia University in New York have, for example, determined that different
brain processes are active when you listen to the left or right. Using artificial
intelligence to tease out these specific brain patterns, we can now determine
very quickly - in less than two seconds – which direction someone is listening to.
The hearing aid can then amplify the speaker at that specific location.

This new technology is very promising due to its high speed, but also raises many
questions. For example, it is currently unclear exactly which brain processes
are active when we listen to a specific direction. The answers to these questions
will have a significant impact on the practical applicability of this innovative
technique.

There’s work to be done

There is still a lot of work to be done before this promising technology becomes a
reality. Among other things, measuring the EEG with wearable sensors remains
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a challenge. We are currently testing this technology in different scenarios and
environments, and experiment with self-learning algorithms that automatically
adapt to new situations.

In overcoming these hurdles, we hope to design a brain-controlled hearing aid
to help improve the lives of people like Johan – to help people with hearing aids
rediscover the joys of Christmas parties, and tune in on the conversations of
their loved ones with ease.
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