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Unsupervised Accuracy Estimation for
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Abstract—Objective: Selective auditory attention decoding
(AAD) algorithms process brain data such as electroencephalog-
raphy to decode to which of multiple competing sound sources a
person attends. Example use cases are neuro-steered hearing aids
or communication via brain-computer interfaces (BCI). Recently,
it has been shown that it is possible to train such AAD decoders
based on stimulus reconstruction in an unsupervised setting,
where no ground truth is available regarding which sound source
is attended. In many practical scenarios, such ground-truth labels
are absent, making it, moreover, difficult to quantify the accuracy
of the decoders. In this paper, we aim to develop a completely
unsupervised algorithm to estimate the accuracy of correlation-
based AAD algorithms during a competing talker listening
task. Methods: We use principles of digital communications
by modeling the AAD decision system as a binary phase-shift
keying channel with additive white gaussian noise. Results: We
show that the proposed unsupervised performance estimation
technique can accurately determine the AAD accuracy in a
transparent-for-the-user way, for different amounts of training
and estimation data and decision window lengths. Furthermore,
since different applications demand different targeted accuracies,
our approach can estimate the minimal amount of training
required for any given target accuracy. Conclusion: Our proposed
estimation technique accurately predicts the performance of a
correlation-based AAD algorithm without access to ground-truth
labels. Significance: In neuro-steered hearing aids, the accuracy
estimates provided by our approach could support time-adaptive
decoding, dynamic gain control, and neurofeedback. In BCIs, it
could support a robust communication paradigm with accuracy
feedback for caregivers.
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I. INTRODUCTION

Selective auditory attention decoding (AAD) methods aim to
decode the focus of selective auditory attention of a person
attending to one out of multiple sounds, for example in a multi-
talker scenario (also known as the cocktail party scenario) [1]–
[4]. This information is decoded from brain signals, where au-
ditory attention processes are encoded [2], [3]. These brain sig-
nals can be recorded with electroencephalography (EEG) [4],
magnetoencephalography (MEG) [3], or electrocorticography
(ECoG) [2].

AAD algorithms have applications in so-called neuro-
steered hearing aids, cochlear implants, or other hearables [1],
as they allow the user to steer the hearing device towards
the conversation or talker they want to listen to in a cocktail
party scenario. The attention information provided by the
AAD algorithm can then be used by noise suppression and
beamforming algorithms to enhance the attended talker and
suppress other talkers considered as background noise. A
(short) review of several (technical) aspects of neuro-steered
hearing devices is provided in [1].

Another potential application use case for such AAD algo-
rithms is in brain-computer interfaces (BCIs) that establish
a communication channel between the brain and the outer
world by decoding messages from brain activity. For this
purpose, a communication protocol must be established to map
a set of cognitive tasks to messages. Originally, BCIs were
meant for people with severe motor impairment, incapable
of using their muscles and thus being unable to produce any
communication in any way. Examples are people living with
amyotrophic lateral sclerosis, in completely locked-in state
(CLIS), Duchenne muscular dystrophy and other forms of
neuromuscular degeneration [5], [6]. The BCI literature has
previously discussed a variety of applications and paradigms
based on attention to auditory stimuli (e.g., multi-talker sce-
narios [7] with natural or modulated voices [8], [9] and other
auditory stimuli [10]).

One of the most popular and established AAD methods is
stimulus reconstruction, where features of the attended speech
(such as the speech envelope) are reconstructed from the
brain activity and compared to the original speech stimuli to
determine the focus of auditory attention [1], [4]. Stimulus
reconstruction relies on a stimulus decoder to reconstruct these
features, which is typically trained in a supervised manner
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where there is access to the ground-truth attention labels.
These ground-truth labels are obtained by instructing the
subject to attend to a specific speaker and ignoring the other
speaker(s) during a training session. Such a supervised training
session takes at least 30-40min, which is not always desirable
(e.g., for plug-and-play hearing devices [11]) and sometimes
not even possible. For example, for patients in a minimally
conscious state, detecting awareness [12] is crucial to establish
a BCI-based communication channel but is extremely difficult
as users cannot cooperate by any means during the training
phase. In [13], the authors used a paradigm based on event-
related potentials to study the feasibility of a communication
channel with CLIS users. They reported two major difficulties:
uncertainty regarding the patient’s levels of awareness and
therefore BCI performance, and the lack of communication
with the user that precluded knowledge of their volition or
intention to cooperate.

For all the reasons above, the development of a completely
unsupervised approach for both training and AAD perfor-
mance assessment is paramount. While an unsupervised (and
time-adaptive) AAD training protocol for stimulus decoding
has successfully been demonstrated in [11], [14], the assess-
ment of the resulting unsupervised decoder still requires la-
belled data from the subject on which the decoder was trained.
To date, there is no method of assessing the performance of
a stimulus decoder in an unsupervised manner. This makes it
impossible to, for example, check whether the unsupervised
decoder performs well enough if the user cannot or should
not give feedback, and thus whether or not more training data
is required. Furthermore, an unsupervised accuracy estimation
would allow the automatic update of various parameters in
an AAD system, such as the speed of adaptation of an
unsupervised decoder, gain control parameters, etc. Therefore,
the goal of this paper is the development of an unsupervised
accuracy estimation method for stimulus decoders in the AAD
stimulus reconstruction paradigm.

The manuscript is organized as follows. In Section II, we ex-
plain the most relevant fundamentals related to (un)supervised
stimulus reconstruction for AAD. In Section III, we unravel
the principles of digital communications that support the
unsupervised estimation of the accuracy and explain our
proposed algorithm. In Section IV, we report the details of the
dataset and experiments, of which the results are presented in
Section V. In Section VI, we discuss the results of the various
experiments and showcase applications of our approach in
neuro-applications.

II. STIMULUS RECONSTRUCTION FOR AAD

A. Supervised stimulus reconstruction

The stimulus reconstruction approach for AAD consists of
reconstructing temporal features (such as the envelope) of the
attended speech signal from the EEG of the listener, followed
by correlating this reconstruction with the actual envelopes
of the competing speech signals to determine the attended
one [1], [4]. In what follows, we give a brief overview of
supervised stimulus reconstruction. A full explanation can be
found in [11], [14].

Using a linear spatio-temporal decoder d ∈ RCL, stacking
all filter coefficients across C channels and L anti-causal time
lags, a sample at time t of the attended speech envelope ŝa(t)
is reconstructed as:

ŝa(t) = x(t)
T
d,

where x(t) ∈ RCL contains the C-channel EEG sample at
time t, appended with the samples at time t+1, . . . , t+L−1
in each channel.

To train the decoder coefficients in d, assume the avail-
ability of K training segments of T time samples, i.e.,
{Xk, (s1k , s2k)}Kk=1, with Xk ∈ RT×CL containing per-
channel Hankel matrices with the time-lagged EEG data of
each channel. For the sake of an easy exposition, we assume
only two competing speakers with speech envelopes s1k and
s2k ∈ RT . During supervised training, additionally, attention
labels yk ∈ {1, 2} are available that indicate which speech
envelope corresponds to the attended envelope sak

∈ RT in
segment k.

The stimulus decoder d can then be trained by minimizing
the squared error between the reconstructed envelope Xkd and
attended one sak

across all training segments:

d̂ = argmin
d

K∑
k=1

||sak
−Xkd||22 . (1)

The solution of (1) can be found by solving the normal
equations, leading to:

d̂ = R−1
xx rxs,

where

Rxx =

K∑
k=1

XT
kXk ∈ RCL×CL, rxs =

K∑
k=1

XT
ksak

∈ RCL

(2)
correspond to the (unnormalized) EEG autocorrelation matrix
Rxx and cross-correlation vector rxs between the EEG and
attended speech envelope.

B. The AAD decision system based on stimulus reconstruction

The trained decoder d̂ can now be used to make AAD
decisions (see Figure 1) based on a new segment of EEG
data X(test) ∈ RTtest×CL, recorded from a user that is at-
tending to one out of two competing speakers with speech
envelopes s(test)

1 and s(test)
2 ∈ RTtest , while ignoring the other

one. First, the stimulus decoder d̂ is used to reconstruct the
attended envelope ŝ(test)

a = X(test)d̂ from the EEG, after which
the Pearson correlation coefficients ρ(ŝ(test)

a , s(test)
1 ) = ρ1 and

ρ(ŝ(test)
a , s(test)

2 ) = ρ2 are computed with both competing speech
envelopes. The speaker that exhibits the highest correlation
with the reconstructed envelope from the EEG is identified as
the attended one.

The length of the EEG test segment (Ttest), often referred to
as the decision window length, determines the important trade-
off between AAD accuracy and decision speed of the system.
Typically the accuracy drastically decreases when moving to
shorter decision window lengths resulting from more noisy
estimates of the correlation coefficients [15].
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Figure 1: A basic BCI-based communication system based on AAD with
stimulus reconstruction.

C. Unsupervised stimulus reconstruction

In Section II-A, we assumed the availability of the attention
labels {yk}Kk=1 during training, indicating the attended speech
envelope from the competing ones. In [11], an unsupervised
training procedure for the stimulus decoder was proposed,
removing the necessity of having access to these (ground-truth)
attention labels.

In (2), these attention labels are required to compute the
cross-correlation vector between the EEG and attended speech
envelope. To still be able to estimate this cross-correlation
vector, [11] proposes to use (pseudo-)labels that are iteratively
updated. The procedure starts with an initial set of (possibly
random) labels and uses these to compute a supervised decoder
via (2). The resulting decoder is then used to repredict the
pseudo-labels, which then replace the initial pseudo-labels
to again construct a new decoder, leading to a new set of
pseudo-labels, etc. As shown in [11], this iterative procedure
of predicting labels and retraining the decoder results in a
self-leveraging effect in which the decoder improves after
each iteration and quickly converges to a final decoder. A full
description and explanation of the algorithm, and comparison
with the supervised stimulus decoder (showing only minor
performance loss) can be found in [11], [14].

III. UNSUPERVISED ACCURACY ESTIMATION

As explained in Section II-C, it is possible to compute a
stimulus decoder in an unsupervised fashion without the need
for ground-truth labels. However, if such ground-truth labels
are not available, we cannot assess the accuracy of this decoder
when applied to the EEG data from a particular subject.
More generally, there is currently no unsupervised method
available to estimate the performance of any stimulus decoder
for AAD. Therefore, the objective is to devise a method
that allows estimating the performance of a correlation-based
stimulus decoder for AAD in an unsupervised setting, i.e.,
without having access to the ground-truth attention labels. To
do so, we draw inspiration from digital communications by
modeling the AAD decision system as a Binary Phase-Shift
Keying (BPSK) channel with Additive White Gaussian Noise
(AWGN) (Section III-A), which requires some assumptions
(Section III-B). This allows us to estimate the performance
based on the unsupervised estimation of the parameters of
the BPSK system (Section III-C). The full algorithm is sum-
marized in Section III-D, while the estimation of confidence
intervals is explained in Section III-E.

A. Stimulus reconstruction for AAD as a BPSK channel with
AWGN

Drawing inspiration from digital communications, we can
view the AAD decision system in Figure 1 as a BPSK
communication channel between a sender (the user) and a
receiver (the computer, hearing aid, etc.). The communication
protocol in this channel is based on the selective attention
listening paradigm, transmitting a binary message that conveys
the attention of the listener (speaker 1 or 2).

In a BPSK system, two counter-phased symbols {+A,−A}
are transmitted over a channel with additive white Gaussian
noise (AWGN), such that the received signals can be written
as:

Zd = x+ n, (3)

with the transmitted symbols x ∈ {+A,−A} and the noise
n ∼ N

(
0, σ2

d

)
.

Let us now see how this relates to our AAD system in
Figure 1, where the output value Zd = ρ1 − ρ2 is treated as a
received BPSK signal as in (3). Indeed, if s1 is the attended
speaker, Zd is positive in expectation (∼ +A transmitted),
while it is expected to be negative if s2 is the attended
speaker (∼ −A transmitted). For each test window, we con-
sider the Pearson correlation coefficients ρ(ŝ(test)

a , s(test)
a ) = ρa

and ρ(ŝ(test)
a , s(test)

u ) = ρu between the reconstructed speech
envelope from the EEG (ŝ(test)

a ) and the actual attended (s(test)
a )

and unattended (s(test)
u ) speech envelope as random variables

that are assumed to be normally distributed, i.e., ρa ∼
N
(
µa, σ

2
a

)
, ρu ∼ N

(
µu, σ

2
u

)
(see Section III-B). At each

decision window, they each correspond to speaker 1 or 2
(ρa = ρ1 or ρa = ρ2 and vice versa for ρu), but this is
unknown. The AAD decision variable Zd = ρ1 − ρ2 is then
equal to ρa−ρu (if s1 is attended/+A is transmitted) or ρu−ρa
(if s2 is attended/−A is transmitted). In both cases, Zd is also
normally distributed, with a variance equal to σ2

d = σ2
a + σ2

u,
assuming the random variables ρa and ρu are uncorrelated
(see Section III-B). Furthermore, it can be inferred that the
transmitted symbols are equal to x = +A = µa − µu (s1
attended), or x = −A = µu − µa (s2 attended).

Under the BPSK with AWGN assumption, the performance
of the AAD system can be calculated using well-known
equations for the bit-error rate (BER) Pe in such a system
(see Chapter 14 of [16] for a complete explanation):

Pe = Q

(
A− (−A)

2σd

)
= Q

(
A

σd

)
= Q

(
µa − µu

σd

)
, (4)

where Q(·) represents the Q-function. In the digital com-
munications domain, it is common to define and use the
EbNo parameter (also referred as γb, or the ratio between the
energy per bit and the noise spectral density). In our BPSK
modulation system, we have:

γb = EbNo ≜
A2

2σ2
d

=
(µa − µu)

2

2σ2
d

. (5)
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µa − µu0

σd =
√

2σ

Pe = 1
2 erfc(µa−µu√

2σd
)

Zd ∼ N (µa − µu,σ2
d)

Figure 2: The AAD error rate or BER can be estimated as the cumulative
distribution function at 0 of Zd ∼ N

(
µa − µu, σ2

d

)
.

Using this expression for γb in (4) leads to the following
final expression for the estimation of Pe:

Pe = Q
(√

2γb

)
=

1√
2π

∫ +∞

√
2γb

e−
x2

2 dx

=
1

2
erfc(

√
γb) =

1

2
erfc

(
µa − µu√

2σd

)
,

(6)

where erfc(·) denotes the complementary error function. This
BER corresponds to the cumulative distribution function of
N
(
µa − µu, σ

2
d

)
, evaluated at 0 (Figure 2). Note that Zd =

ρ1 − ρ2 follows this same distribution if speaker 1 is attended
(+A transmitted). In the other case where speaker 2 is attended
(−A transmitted), Zd follows N

(
µu − µa, σ

2
d

)
. Due to the

symmetry between both cases, it is sufficient to only analyze
the case Zd ∼ N

(
µa − µu, σ

2
d

)
.

The estimation of the BER (Pe) or AAD accuracy (1−Pe)
thus boils down to estimating the parameters µa−µu, σ

2
d, and

plugging these into (6). In Section III-B, we first outline the
assumptions that are needed to estimate these different param-
eters in an unsupervised fashion, resulting in an unsupervised
estimation of the accuracy, as explained in Section III-C.

B. Assumptions

To simplify and enable the unsupervised estimation of the
aforementioned parameters and corresponding accuracy, we
make the following assumptions about the distributions of the
correlation coefficients ρa, ρu.

Assumption 1. The attended and unattended correlation coef-
ficients are normally distributed, i.e., ρa ∼ N

(
µa, σ

2
a

)
, ρu ∼

N
(
µu, σ

2
u

)
.

While the Pearson correlation coefficient is bounded to
[−1, 1] and the normal distribution is unbounded, in practice
this is a reasonable assumption. Fisher showed that the z-
transformation z = 1

2 log
(

1+r
1−r

)
of the Pearson correlation

coefficient r is approximately normally distributed even for
small sample sizes [17]. However, the typical attended and
unattended correlation coefficients |ρa|, |ρu| using linear stim-
ulus decoders are approximately 0.1 and 0.05, respectively
(see, e.g., Figure 5), while the z-transformation is almost
equal to the identity function for |r| < 0.5. As such, the
normality assumption seems reasonable. Furthermore, Geir-
naert et al. [11] did not find significant deviations from a
normal distribution for the correlation coefficients resulting

from stimulus reconstruction, further supporting this assump-
tion. However, if a normality check (e.g., using a normality
test or a graphical normplot) does not support the normality
assumption, a potential solution is to first apply the previously
mentioned Fisher transformation [17].

Assumption 2. ρa and ρu are uncorrelated.

Both correlation coefficients are generated from the same
reconstructed envelope ŝ

(test)
a , albeit correlated with a different

speech envelope in both cases. As a result, there might be
some spurious correlation between them due to this common
component, such that Assumption 2 might be slightly violated.
Nevertheless, this assumption simplifies the unsupervised esti-
mation of the parameters in Section III-C and was empirically
observed to not result in substantially higher estimation ac-
curacies compared to the case where the (small) correlation
between ρa and ρu is taken into account (see Appendix A).
Therefore, we will use Assumption 2 in the remaining of the
paper for the sake of mathematical tractability.

Assumption 3. ρa and ρu have the same variance, i.e., σ2
a =

σ2
u = σ2.

This is a reasonable assumption given that the standard
deviation on the correlation coefficients is mainly dominated
by the noise, i.e., the EEG components that are uncorrelated to
the speech envelopes. These EEG components have a much
higher variance than the speech-following neural responses.
Furthermore, in the literature several estimators for the stan-
dard deviation of the Pearson correlation coefficients have
been proposed. For example, in [18], the standard deviation
of Pearson correlation coefficients of two normally distributed
variables is approximated by

σ =
1− r2√

n
, (7)

with r the mean correlation coefficient and n the number of
samples used in the estimation. Whatever formula is used, all
of them have in common that for any two small correlation
coefficients (i.e., r ≪ 1) calculated with the same n, their
respective standard deviations are approximately the same.
In this regard and considering that typical mean values µa

and µu are approximately 0.10 and 0.05 (see, e.g., Figure 5),
their respective standard deviations would differ approximately
0.75%, thus supporting this assumption.

Assumption 4. The attended correlation coefficient is on
average larger than the unattended one, i.e., µa > µu.

This assumption is grounded in the design of the attended
decoder, which minimizes the squared error between the re-
constructed and attended envelope (see Section II-A). In [19],
it shown that this is equivalent with maximizing the attended
correlation.

Assumption 5. The distributions ρa ∼ N
(
µa, σ

2
a

)
and ρu ∼

N
(
µu, σ

2
u

)
are stationary, i.e., they do not change over time.

While this assumption might not be true in a long-term
setting [14], it can be accommodated by limiting the time span
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over which the unsupervised accuracy estimation is performed.
We will experiment with different estimation times further on.

C. Estimation of parameters

As explained in Section III-A, the unsupervised estimation of
the BER/accuracy boils down to the unsupervised estimation
of the mean and standard deviation of Zd ∼ N

(
µa − µu, σ

2
d

)
,

given the assumptions in Section III-B. We assume that M
decision windows with correlation coefficients with speaker
1 (ρ1) and 2 (ρ2) per decision window are available, i.e.,
{ρm1 , ρm2 }Mm=1, but without knowing which correlation coeffi-
cient corresponds to the attended (ρa) or unattended one (ρu).

1) Estimation of σ2
d: To estimate the standard deviation,

we define the new random variable Zs = ρa + ρu ∼
N
(
µa + µu, σ

2
s

)
. The key ingredient is that we have access to

the samples of Zs (per decision window) in an unsupervised
way, given that

Zs = ρa + ρu = ρ1 + ρ2 ∼ N
(
µa + µu, σ

2
s

)
,

where it does not matter whether speaker 1 or 2 is attended.
This means that we can directly estimate the standard deviation
σ2
s from the observed values of Zs, i.e., {ρm1 + ρm2 }Mm=1.

Using the unbiased estimator of the standard deviation, we
find:

σs =

√√√√ 1

M − 1

M∑
m=1

(ρm1 + ρm2 − µs)2,

with µs =
1

M

M∑
m=1

(ρm1 + ρm2 ).

Given Assumption 2 and 3, we furthermore find that σ2
s =

σ2
a+σ2

u = 2σ2, and σ2
d = σ2

a+σ2
u = 2σ2, such that σ2

d = σ2
s ,

resulting in the unsupervised estimation of σ2
d.

2) Estimation of µa−µu: To estimate the mean of Zd, we
define the new random variable Z|d| = |ρa−ρu|. The absolute
value is again crucial here to enable unsupervised access to the
samples of this variable, i.e., Z|d| ≜ |ρ1 − ρ2| = |ρa − ρu| =
|ρu − ρa|, and therefore it is independent of whether speaker
1 or 2 is attended.

Furthermore, given that Z|d| is defined as the absolute
value of a normal distribution, it follows the folded normal
distribution, which can be defined in terms of the parameters
of the underlying normal distribution [20], i.e., µa − µu and
σ2
d:

Z|d| ∼ f
(
x;µa − µu, σ

2
d

)
=

√
2

πσ2
d

e
− (x2+(µa−µu)2)

2σ2
d cosh

(
(µa − µu)x

σ2
d

)
,

where σ2
d is already known from Section III-C1. The mean of

the underlying normal distribution of Zd can now be estimated
using the method of moments or the maximum likelihood
estimator [20]. Given that both estimation methods give similar
results, we here choose for the method of moments as it is

more intuitive. The first order moment or mean of the folded
normal distribution is equal to [20]:

µf =

√
2

π
σde

− (µa−µu)2

2σ2
d + (µa − µu) erf

(
µa − µu√

2σd

)
, (8)

with erf(·) the error-function. By equating (8) to the sample
mean of Z|d|, we can solve the following equation for x:√

2

π
σde

− x2

2σ2
d + x erf

(
x√
2σd

)
=

1

M

M∑
m=1

|ρm1 − ρm2 |. (9)

Given that the left-hand side of (9) is an even function in x,
it has a solution both at x = µa−µu and x = µu−µa. Given
Assumption 4, we can finally find an estimate of µa − µu by
taking the positive solution of (9), which can be found, again,
fully unsupervised.

D. Algorithm

The full unsupervised accuracy estimation algorithm is sum-
marized in Algorithm 11.

Algorithm 1 Unsupervised accuracy estimation of a
correlation-based stimulus decoder
Input: Correlation coefficients between the reconstructed en-
velope and competing speech envelopes for M decision win-
dows: {ρm1 , ρm2 }Mm=1

Output: BER, accuracy
1: Check for normality of Zs = ρ1 + ρ2. If not normal,

apply a normality transformation (e.g., the Fisher trans-
formation).

2: Compute

µs =
1

M

M∑
m=1

(ρm1 + ρm2 ) and

σd =

√√√√ 1

M − 1

M∑
m=1

(ρm1 + ρm2 − µs)2.

3: Find the positive root x⋆ of√
2

π
σde

− x2

2σ2
d + x erf

(
x√
2σd

)
− 1

M

M∑
m=1

|ρm1 − ρm2 | = 0.

4: Compute

BER = Pe =
1

2
erfc

(
x⋆

√
2σd

)
and

accuracy = 1− Pe.

Note that, if desired, the distributions of ρa, ρu can be easily
derived from the estimated distributions of Zs and Z|d|, by
solving the following equations for µa, µu, σ

2
a, σ

2
u:

σ2
s = σ2

d = 2σ2 = 2σ2
a = 2σ2

u,

µs = µa + µu, x
⋆ = µa − µu.

1Corresponding MATLAB code can be found online: https://github.com/
AlexanderBertrandLab/unsupervised-AAD-accuracy-estimation.

https://github.com/AlexanderBertrandLab/unsupervised-AAD-accuracy-estimation
https://github.com/AlexanderBertrandLab/unsupervised-AAD-accuracy-estimation
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E. Confidence intervals

To quantify the uncertainty on the estimated accuracy using
Algorithm 1, bootstrapping can be used to compute the 95%-
confidence interval [21]. By resampling the unsupervised
set of correlations {ρm1 , ρm2 }Mm=1 with replacement (i.e., the
Monte Carlo approximation), a bootstrap distribution can be
constructed via Algorithm 1 to approximate the distribution
of the unsupervised estimate around the true underlying ac-
curacy [21]. From this bootstrapped distribution, the 95%-
confidence interval can then be computed to approximate the
true 95%-confidence interval. However, here we use the bias-
corrected and accelerated bootstrapping method for confidence
intervals to deal with the over-coverage issues of the aforemen-
tioned basic percentile method, as explained in [22].

IV. EXPERIMENTS

A. Setup and objectives

We will perform experiments with the following three objec-
tives in mind:

O1: Validation of our proposed approach for the unsuper-
vised estimation of the AAD accuracy of a given (unsuper-
vised) stimulus decoder. For that purpose, we will compare the
true (supervised) accuracy, quantified using the ground-truth
attention labels, with the estimated accuracy using different
decision windows to evaluate the Pe (or BER). Furthermore,
we will compare the maximum information transfer rate2

(ITR) [23] across decision window lengths (see Section IV-E).
O2: Once our approach is validated, we will use different

sizes of training sets for the stimulus decoder to evaluate our
approach on different versions of (suboptimal) decoders. The
purpose is to assess the minimum amount of training data and
decision window length to achieve a given targeted accuracy.
In some critical applications, guaranteeing a certain minimum
accuracy in a BCI-based communication system is vital (e.g.,
driving a wheelchair, controlling a panic button, or expressing
living wills). Secondly, varying the amount of training data
will lead to lower-quality decoders and, therefore, lower AAD
performances. As such, it allows to assess the unsupervised
estimation across a wide range of AAD performances, thereby
representing various factors that influence the decoder quality
(e.g., number and position of channels, listening scenarios).

O3: While we will initially assume abundant availability
of test data to estimate the accuracy, we will evaluate the
effect of the amount of estimation data MTtest on the accuracy
estimation, with in the limit using only one window (i.e.,
estimating whether a single decision is right or wrong). This
is important in a time-adaptive context, where you want to
estimate the performance of the AAD system on a short time
scale to be able to adapt properties of the system.

While we evaluate the estimation technique on the unsuper-
vised stimulus decoder of Section II-C, we want to stress that
the presented methodology is independent from the specific
type of stimulus decoder (either supervised, unsupervised,

2AAD algorithms are often evaluated in the context of neuro-steered
hearing devices, where metrics like the minimum expected switch duration
(MESD) [15] may be more relevant than ITR. Here, however, we use ITR to
broaden the application scope to include assistive communication BCIs.

linear, or non-linear) as long as the AAD system employs
a correlation-based paradigm as in Section II-B.

B. AAD dataset

The dataset for these experiments consists of 72min of EEG
recordings (64-channel BioSemi ActiveTwo system) from 16
normal-hearing participants participating in a dual-listening
task [19]. The participants were instructed to selectively attend
to one of two competing talkers coming from the left or right
(±90◦ azimuth). The experiment consisted of 8 separate trials
of 6min and 12 trials of 2min-repetitions of the first trials.
The dataset is available online [24] and a more extensive
description can be found in Biesmans et al. [19].

The speech and EEG preprocessing, as well as the decoder
setup and training, are the same as in [11]. For the sake of
clarity, we summarize them in the next two subsections.

C. Speech and EEG preprocessing

Each audio signal was decomposed using a gammatone filter
bank, with output subband envelopes computed via a power-
law function with exponent 0.6 and summed to obtain the final
auditory envelope [19]. Both the EEG data and speech en-
velopes were then filtered between 1–9Hz and downsampled
to 20Hz, without additional noise or artifact removal applied.

D. Decoder setup and training

The stimulus decoder was calculated by means of the unsuper-
vised training algorithm from [11] described in Section II-C.
Coefficients of the initial decoder were set to random values.
The integration window of the decoder was set to 0–250ms
post-stimulus. As recommended, ten iterations were used to
iteratively improve the decoder. During training and testing,
the clean speech envelopes (available in the dataset) were used.

While we opt for the unsupervised stimulus decoder in the
experiments to showcase the unsupervised accuracy estima-
tion, the choice of the stimulus decoder is independent of
the performance estimation, i.e., any other stimulus decoder
(e.g., supervised, unsupervised, linear, non-linear) that uses
the decision framework of Section II-B would work.

E. Evaluation

Per subject, continuous recordings were partitioned into seg-
ments of T = 5, 10, 20, 40 and 80 s, from which training and
test sets of K, respectively M segments were created. This
range of window lengths is considered convenient in real-time
BCI applications, including AAD, in which detection of the
attention to external stimuli should be carried out in maximally
a few tens of seconds. In the experiments for O1 and O2, the
training segment length for the unsupervised decoder is chosen
equal to the decision window length, i.e., T = Ttest. Given that
there are only two competing speakers in the experiments, the
chance level corresponds to 50%.

For O1, we followed a holdout (ho) approach in which 75%
of the segments of the full dataset, corresponding to 54min,
were randomly selected for the unsupervised training of the
decoder and 25% (ho = 25%), i.e., 18min, to test the accuracy
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Figure 3: Illustrative example of distributions of ρa and ρu (ho = 25%, T =
20 s) of an intermediate performer (subject 6). Both (a) the histogram on the
left and (b) the normplot on the right suggest normality.

estimation. We randomly repeated this process of training and
unsupervised accuracy estimation several times to guarantee
a minimum of M = 1000 detections per decision window
length to ensure sufficient estimation data is available. For the
confidence intervals, 1000 resamplings were used. To compare
across decision window lengths, the unsupervised estimated
maximum ITR across decision window lengths (max-ITR) is
compared with the true supervised one. The ITR, often used
in BCIs to combine accuracy and decision window length in a
single metric [23], is defined for two classes/speakers as ITR =
60
Ttest

(1 + Pe log2 Pe + (1− Pe) log2(1− Pe)), in bits/min.
For O2, we repeated the whole process described for O1

three times with different ho-ratios to decrease the amount of
training data. Each time, the size of the training dataset used
for the unsupervised training was 50%, 25% and 10% (ho
equals 50%, 75% and 90%, respectively). This corresponds to
training set sizes of 36, 18 and 7min, respectively.

For O3, a fixed amount of training data, i.e., 75% of
segments or 54min, is taken. As opposed to in O1 and O2, the
training segment length is kept constant on T = 80 s and is
thus decoupled from the decision window length Ttest, which
again varied from 5 to 80 s. While the amount of training data
is fixed, the testing/estimation time is, however, varied from
1, 5, 10, 30 to 60min. The holdout procedure is repeated a few
times to accumulate enough decisions to achieve the desired
estimation time. Per subject, this whole procedure is repeated
5 times to obtain a stable estimate of the mean absolute
difference between supervised measured (with ground-truth)
and unsupervised estimated (without ground-truth) accuracy.

V. RESULTS

A. Validation of assumptions

In this section we present the results related to the assumptions
described in Section III-B.

1) Assumption 1: normality: As an illustrative example,
the left plot in Figure 3 shows a typical distribution of
the attended and unattended cross-correlation values using
T = 20 s windows for an intermediate performer, whereas
the right plot shows the corresponding normplot curve.

2) Assumption 2: uncorrelatedness: When testing the sig-
nificance of the correlation between the attended and unat-
tended correlation coefficients per subject, we find a significant
correlation (p-value < 0.05) for 4 out of 16 subjects, when
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Figure 4: Upper and bottom plot show the standard deviations of ρa(σa)
and ρu(σu) for different decision window lengths (ho = 25%). Each line
represents one subject. The colored line represents the mean across subjects.
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Figure 5: Upper and bottom plot show the mean values of ρa(µa) and ρu(µu)
for different decision window lengths (ho = 25%). Each line represents one
subject. The colored line represents the mean values subjects.

using 20 s decision windows, ho = 25% and 1000 detections.
This implies that this assumption is not (always) satisfied.
However, we refer to Section III-B and Appendix A for further
elaboration and the practical impact of this assumption.

3) Assumption 3: equal variance: Figure 4 shows the
standard deviation of ρa(σa) and ρu(σu) for different decision
window lengths (upper and bottom plots respectively). The
maximum absolute difference between σa and σu across
subjects and decision window lengths never exceeded 0.01.

4) Assumption 4: µa > µu: Figure 5 shows the mean
values of ρa(µa) and ρu(µu) (upper and bottom plots respec-
tively) with different values of the decision window length,
for all subjects.

B. Objective O1

Figure 6 shows the overall mean absolute difference between
the supervised measured and unsupervised estimated AAD
accuracies across different decision window lengths. Table I
shows a breakdown of the supervised measured (Meas) and
unsupervised estimated (Est) accuracies for decision windows
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Figure 6: This figure shows the absolute difference between the supervised
measured and unsupervised estimated accuracy as a function of decision
window length (mean ± standard deviation). It shows the overall low errors
obtained by our proposed unsupervised estimation method.

Accuracy [%] per decision window length [s] max-ITR
[ bit

min ]80 40 20 10 5User

Meas Est Meas Est Meas Est 95%-CI Meas Est Meas Est Meas Est

1 49.7 50.0 46.4 50.0 50.1 50.0 [50.0,60.5] 49.3 50.0 48.5 55.7 0.0078 0.11

2 97.3 93.7 90.4 90.1 81.3 82.7 [80.3,85.0] 74.6 74.6 65.1 61.7 1.09 1.10

3 95.6 97.8 93.3 95.0 84.1 88.3 [85.7,90.3] 71.3 81.7 68.0 73.9 1.15 2.05

4 90.6 82.9 85.0 82.4 75.5 74.1 [69.7,77.9] 67.9 72.6 64.7 64.8 0.76 0.92

5 93.5 95.3 89.1 89.4 85.0 78.7 [74.7,81.5] 75.0 73.3 68.6 66.3 1.23 0.98

6 84.1 80.6 80.5 77.8 69.2 71.8 [66.5,76.1] 64.9 63.5 58.3 56.0 0.43 0.43

7 90.3 92.3 85.4 89.6 78.1 78.4 [74.6,81.3] 70.8 68.9 61.3 67.3 0.77 1.06

8 61.2 58.5 64.9 68.8 62.5 57.6 [49.9,66.4] 56.4 50.0 57.6 50.0 0.20 0.16

9 72.6 79.3 69.0 73.6 60.4 68.2 [60.8,72.8] 57.8 60.1 55.3 53.0 0.16 0.29

10 88.7 92.7 80.0 87.3 73.7 78.0 [73.8,81.3] 65.7 64.7 60.1 51.9 0.51 0.72

11 83.6 85.4 77.8 80.7 72.2 67.1 [59.4,72.4] 65.8 64.3 61.6 50.0 0.47 0.44

12 69.1 50.0 66.0 63.3 63.5 56.2 [49.9,64.7] 58.4 49.9 54.0 62.0 0.16 0.50

13 81.5 84.2 79.5 76.5 69.5 69.0 [61.5,73.8] 65.6 61.6 62.8 60.1 0.57 0.36

14 99.5 98.9 97.4 97.2 92.4 92.7 [91.2,94.0] 84.1 84.4 71.2 71.5 2.2 2.3

15 89.6 94.6 86.3 90.6 80.7 79.5 [76.1,82.5] 68.1 64.8 64.6 60.6 0.87 0.82

16 91.5 89.9 86.8 84.0 76.9 74.7 [70.4,78.4] 68.3 66.3 63.1 68.3 0.66 1.19

Mean 83.7 82.9 79.9 81.0 73.4 72.9 [68.4,77.4] 66.5 65.7 61.6 60.8 0.70 0.84

Max abs err 19.1 7.3 7.8 10.4 11.6 0.90

Min abs err 0.3 0.2 0.1 0.01 0.1 0.001

Mean abs err 4.1 2.9 3.1 3.1 4.8 0.2

Table I: Comparison between measured (supervised, using ground-truth atten-
tion labels) and estimated (unsupervised, using the proposed methodology)
accuracies and max-ITR (ho = 25%). For readability, only the 95%-
confidence intervals (CIs) for 20 s decision windows are added. Gray rows
correspond to selected subjects in Figure 7 and 8.

of 5, 10, 20, 40 and 80 s for all subjects, as well as the
maximum ITR (max-ITR) across window lengths (ho = 25%).
Performances in the ‘Meas’ columns were calculated using
the ground-truth attention labels, whereas those in the ‘Est’
columns were estimated by means of our unsupervised ap-
proach. The last three rows represent the maximum, minimum
and mean absolute difference across subjects between the
unsupervised estimated and the supervised measured per-
formances. The 95%-confidence intervals for 20 s decision
windows are reported between brackets.

Figure 7 shows the unsupervised estimated and supervised
measured curves of the BER (Pe) as a function of the
unsupervised estimated EbNo for specific subjects (rows with
dark background in Table I). These subjects correspond to the
worst and best performers (S1 and S14 respectively) and one
intermediate performer (S13).

Decision window length [s]

80 40 20 10 5
Holdout

[%]
Training

[min]
Meas Est Meas Est Meas Est Meas Est Meas Est

25 54 83.7 82.9 79.9 81.0 73.4 72.9 66.5 65.7 61.6 60.8

50 36 79.2 79.8 73.6 75.2 69.3 68.3 64.7 62.7 60.9 59.8

75 18 71.9 72.3 66.6 67.9 63.2 61.8 59.5 57.8 57.2 56.7

90 7 66.6 65.5 62.2 63.4 58.9 59.6 56.9 56.7 54.3 54.3

Table II: Comparison between the mean supervised measured and unsuper-
vised estimated accuracies across all 16 subjects for different holdouts. Along
the white and grey counter-diagonal lines, similar accuracies can be found.

C. Objective O2

Analogously to Figure 7, Figure 8 shows the supervised
measured and the unsupervised estimated curves of BER/Pe

of selected subjects for holdouts 50% (36min training data),
75% (18min training data) and 90% (7min training data) and
decision window lengths of 5, 10, 20, 40 and 80 s.

Analogously to Table I, Table II shows the mean val-
ues across subjects in the dataset of the supervised mea-
sured and unsupervised estimated accuracies for holdouts
25%, 50%, 75% and 90%. Along the white and gray counter-
diagonal lines, similar mean accuracies can be found.

D. Objective O3

Figure 9 shows the mean absolute difference across all subjects
when varying the amount of estimation data that is available,
for different decision window lengths. The amount of training
data was kept constant on 54min, corresponding to 75% of
the data, and the training window length was equal to 80 s.

VI. DISCUSSION

A. General assumptions

In our approach, we assumed that the accuracy could be
estimated in an unsupervised fashion by applying principles
from BPSK modulation in the presence of AWGN. Figures 3,
4, 5 and the satisfying performance in Figure 6, Tables I and
II suggest that the underlying assumptions are (approximately)
satisfied. More specifically, in Section III-B, we outlined the
different assumptions, which were evaluated in Section V-A.

1) Assumption 1: normality: From Figure 3, no substantial
departure from normality can be identified in the normplot,
while the histogram clearly reveals a Gaussian shape, support-
ing the AWGN assumption. This confirms the results in [11],
where no substantial deviation from the normal distribution
of the correlations was found with the Kolmogorov-Smirnov
test, on the same dataset. As mentioned in Section III-B, if
normality does not hold (e.g., on very short windows or using
exotic features), an appropriate normality transformation can
be applied.

2) Assumption 2: uncorrelatedness: This is the most de-
batable assumption, given that for 4 out of the 16 subjects,
a significant correlation between the attended and unattended
correlation coefficients was identified. Moreover, we found a
statistically significant (positive) relation (p-value = 0.0414)
between the absolute estimation error (between supervised
measured and unsupervised estimation accuracy) and the abso-
lute value of the correlation between attended and unattended
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Figure 7: This figure shows the unsupervised estimated (full circles) and supervised measured (open circles) BER vs estimated EbNo of selected participants
from Table I (the worst (S1), an intermediate (S13), and the best (S14) performer in terms of supervised measured performance). Each circle corresponds to a
decision window length (dw) of 5, 10, 20, 40 or 80 s. The x-axis shows the unsupervised estimated EbNo using (5) for these decision windows. Our proposed
unsupervised estimated accuracy closely approximates the supervised measured accuracy.
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Figure 8: This figure shows the unsupervised estimated (full circles) and supervised measured (open circles) BER vs estimated EbNo of selected participants
(the worst (S1), an intermediate (S13), and the best (S14) performer) for holdouts (ho) 50%, 75% and 90% (in blue, orange and yellow respectively) and
decision windows (dw) of 5, 10, 20, 40 and 80 s. Each plot contains 15 pairs (3 ho ×5 dw lengths). This combination generates a pattern of BERs that
matches the expected curves of BERs under a wide range of EbNo.
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Figure 9: This figure shows the mean absolute difference as a function of
the amount of data available to estimate the accuracy, for different decision
window lengths. It reveals the trade-off between amount of estimation data
(speed of estimation) and estimation accuracy (reliability), which is relevant
in a time-adaptive, non-stationary context.

EEG-stimulus correlations. For example, user 5 in Table I
(20 s) yields one of the largest absolute errors of 6.3 pp, related
to a significant correlation of 0.16 (p-value < 0.001) between
the attended and unattended correlations. Therefore, the more
the uncorrelatedness assumption is violated, the larger the esti-
mation error. The violation of this assumption thus explains in

part larger errors in estimation (we observe a 44.7% correlation
between these two values for 20 s windows). However, as
mentioned in Section III-B, this assumption is necessary to
simplify and enable an easy unsupervised accuracy estimation.
More specifically, it allows to estimate σ2

d via σ2
s . When

removing this assumption, the variance of the sum needs to
be corrected using this correlation to estimate the variance of
the difference. In Appendix A, we show that the estimated
accuracy improves if we had access to this information, again
showing that this assumption is probably most violated in
practice - although still giving good performance.

3) Assumption 3 and 4: Figure 5 shows that the mean val-
ues of ρa(µa) and ρu(µu) for any participant remain constant
for all decision window lengths (ho = 25%). Furthermore,
Figure 4 clearly shows how the standard deviation decreases
for longer decision windows. This suggests that the deci-
sion window length does not affect the decoder performance
in terms of average cross-correlation values (approximately
0.10 and 0.05 for the attended and unattended correlation
(Figure 5), confirming Assumption 4), but rather influences
the estimation noise and thus the variance on the estimated
correlation coefficients.

Furthermore, Figure 4 shows that the respective variances
of the attended and unattended correlation coefficients are
approximately the same (also across all subjects), thereby
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confirming Assumption 3. The standard deviations approx-
imately decay with a 1√

2
factor every time the decision

window doubles, consistent with the theoretical formula for
the standard deviation of the correlation coefficient in (7). This
justifies our assumption that both ρa and ρu were affected by
the same amount of AWGN.

4) Assumption 5: While this assumption is necessary to
accumulate sufficient test data to be able to estimate the per-
formance, it is not explicitly tested in this paper. Furthermore,
the dataset we use has been recorded in one relatively short
session, thereby limiting the (longer-term) non-stationarities
that could occur in EEG recordings [14]. Exactly to test our
approach when this assumption over longer time periods is
removed, we introduced O3, limiting the amount of estimation
time to cope with the longer-term non-stationarities in a time-
adaptive context (see Section VI-D).

B. Objective O1

Figure 6 and Table I evidence the capability of our approach
for the unsupervised estimation of the AAD performance of
a stimulus decoder, both in terms of individual accuracies
per decision window length and an across window length
performance metric as the max-ITR. Across all subjects, the
absolute difference between the mean measured (supervised)
and estimated (unsupervised) accuracy varies in the range
of 0.5–1.1 percentage points (pp) across decision window
lengths. Even on an individual level, the mean absolute dif-
ference remains low (between 2.9 − 4.8 pp, see Figure 6).
These results reveal the level of accuracy that our approach can
achieve for the performance estimation. Furthermore, in 61.3%
of the cases (median 75%), the supervised measured accuracy
lies within the unsupervised estimated 95%-confidence interval
using the bootstrapping method in Section III-E. As explained
in Section VI-A, the larger errors in Table I can be largely
attributed to the violation of Assumption 2.

For the three selected participants (S1, S13 and S14),
Figure 7 represents the Pe (or BER) in function of the
EbNo calculated according to (6). Again, it can be seen that
our unsupervised approach to estimate the accuracy nicely
approximates the supervised measured accuracy. The only
exception is for the best performer (S14) with the longest
decision window (80 s). In this case, there is a visually large
error between the measured and the estimated Pe, despite the
quantitatively negligible difference of 99.5% vs 98.9% (see
Table I). This large visual error can be attributed to the steep
slope of the log-function close to 0, given the supervised
measured Pe is approximately 0.50%. For the worst performer
(S1), the BER-curve remains flat at chance level regardless of
the decision window. Interestingly, for all selected subjects
(except S1), the graphs show that above a certain minimum
EbNo (approximately > −12 dB), it increases by approxi-
mately 3 dB each time the decision window is doubled. This
is consistent with the linear model that we assumed and can
be attributed to the fact that mean correlations do not change
across decision window lengths (Figure 5), while standard de-
viations vary as in (7) (see also Section VI-A). The implication
is that it is possible from our model in (6) to predict the AAD

accuracy for any decision window length once the parameters
are estimated for only one specific decision window length.

Lastly, note that our approach flexibly allows using any
type of stimulus decoder that uses a correlation-based decision
scheme as in Section II-B (either linear or non-linear, with
supervised or non-supervised training).

C. Objective O2

Analogously to the results of O1, Table II presents the mea-
sured (supervised) and estimated (unsupervised) accuracies
for different training set sizes. The objective is to assess
whether it is possible to determine the minimum amount of
training data and corresponding decision window length to
guarantee or at least give an indication towards a given targeted
accuracy. Secondly, it allows to validate the performance of
the unsupervised estimation across a wide range of decoder
quality and corresponding AAD performance.

As expected, a decay of the AAD accuracy can be observed
with decreasing training set sizes. We also observe that our
proposed approach keeps yielding accurate estimations of the
accuracy. However, a certain degree of degradation occurs with
decreasing the size of the training set (e.g., ho = 90%). How-
ever, even for ho = 90% (7min of training data) the estimation
error shows to be more than acceptable (see Table II).

Figure 8 shows that, for the selected subjects and com-
binations of training data sizes (36 (ho = 50%), 18 (75%),
and 7min (90%)) and decision window lengths (5, 10, 20, 40
and 80 s), the unsupervised estimated Pe’s closely match the
supervised measured Pe’s similarly to Figure 7 for ho = 25%.
In practical terms, this fact implies that a certain targeted
accuracy for a BCI application can be approximated by trading
off the size of the training set and decision window length.
This is reflected in Table II, when comparing accuracies across
the white and gray counter-diagonal lines. For instance, if
a specific application would require an accuracy of 65%,
it could be obtained with any of these combinations that
belong to the same diagonal (training size = 7min, dw =
80 s), (training size = 18min, dw = 40 s), (training size =
36min, dw = 20 s) and (training size = 54min, dw = 10 s).
Moreover, through the proposed algorithm, this trade-off can
be made fully unsupervised, enabling applications where su-
pervised training is impossible (see Section VI-E). Finally, the
95%-confidence interval cannot only be used as a measure of
uncertainty, useful in itself, but the lower bound can also be
used as a conservative estimate for the accuracy in case stricter
guarantees about the performance are required.

A procedure for the determination of the minimum amount
of training data and the decision window length for a targeted
accuracy would be to collect data, train an unsupervised
decoder and unsupervised estimate γb with our proposed
algorithm for one or several decision window lengths. In case
only one decision window length is used, the estimated γb
in (5) can be extrapolated to other decision window lengths
by adapting the estimated standard deviation using (7) (i.e., by
changing n), while the estimated mean can be kept constant, as
discussed in Section VI-A. With these values, the Pe could be
estimated by means of (6). The optimal combination depends



11

on functional elements, such as the usability, time to prepare,
collect data and train the decoder, or the maximum latency
(i.e., minimum rate) at which detections should be performed.

D. Objective O3

Figure 9 clearly shows that the fewer estimation data avail-
able to assess the AAD performance, the worse the estimation
(as expected), following an exponential-like trend. In a time-
adaptive context, this introduces a clear trade-off: the faster
an estimate is required, the cruder it will be. Below 5min
of estimation data, the errors become unacceptably large.
However, this effect is more pronounced for longer decision
window lengths. This can be explained because we take time
as a starting point to quantify the amount of estimation data,
such that the shorter the decision window length becomes,
the more decisions are available in Algorithm 1 (i.e., M is
larger). The effect of the interplay between estimation time and
decision window length becomes apparent from the moment
that less than 30min of estimation data is available.

This experiment becomes especially relevant when the sta-
tionarity assumption (Assumption 5) no longer holds. In a
practical BCI or AAD application, there will be longer-term
non-stationarities in the data arising from the EEG equipment
(impedances that change, electrodes that move, etc.) or from
the user and its environment. As shown in [14], these non-
stationarities impact the AAD performance, necessitating time-
adaptive stimulus decoders that update on a shorter time pe-
riod. This means that, in practice, the (estimated) distributions
of ρa, ρu change (shift) over time. In a practical application, it
is thus paramount to take these shifts into account, for exam-
ple, by reducing the estimation time while taking the trade-
off between reliability and speed of estimation presented in
Figure 9 into account. Note that this non-stationarity problem
is not fully taken into account in Figure 9: the dataset does
not contain many of these longer-term non-stationarities, given
that it was recorded in a lab-controlled environment in a single
experiment. Introducing these non-stationarities could change
the presented trade-off in Figure 9, leading to a more optimal
trade-off at shorter estimation times.

E. Applications in neuro-engineering

1) Impact in neuro-steered hearing devices: The developed
unsupervised estimation of the AAD accuracy of a stimulus
decoder has several applications in neuro-steered hearing de-
vices. For example, when targeting a time-adaptive, unsuper-
vised stimulus decoder as in [14], a time-adaptive estimate
of the performance could be used to dynamically change the
updating window of the adaptive decoder. It allows to more
accurately control the trade-off between stability/accuracy of
the decoder and time-adaptivity/speed of adaptation.

Furthermore, a time-adaptive estimate of the AAD accuracy
can be employed to dynamically update the AAD decision sys-
tem (e.g., via the decision window length). For example, when
a certain performance needs to be guaranteed, the decision
window length might need to be adapted over time, based on
the estimated performance we provide. Furthermore, in [15],
it is shown that the optimal parameters for an AAD-based

gain control system depend on the AAD accuracy. A dynamic
unsupervised estimate of this accuracy could therefore be used
to optimally update the gain control system properties.

Thirdly, this unsupervised estimate allows monitoring the
AAD system’s performance in a hearing device, flagging
potential problems to the user and/or expert and informing
appropriate interventions.

Lastly, the proposed approach in Section III gives additional
insights into the distribution of the correlation coefficients,
informing a clear strategy to improve future stimulus decoders,
i.e., by increasing the separation between the average attended
and unattended correlation. This is directly apparent from (6),
as the erfc-function is a monotonically decreasing function.
Furthermore, (6) allows inferring how well the decoder needs
to separate the competing talkers to achieve a certain desirable
performance. Note that these insights do not only inform a
better algorithm design for stimulus decoders, but also give
rise to a neurofeedback training program for neuro-steered
hearing device users. For example, the estimate of the mean
difference of correlations, µa−µu, could be used as a training
metric for users to learn to maximize.

2) Impact in BCIs: In the BCI realm, there is an inter-
esting opportunity for the proposed unsupervised approach in
applications intended for users with severe motor or cognitive
impairments. In the literature, there are antecedents of using a
dichotic listening task to build a communication channel. For
instance, in [7], [9], the envelopes of two to six simultaneous
speakers were synthetically modified to evoke a constellation
of BPSK and 4-PSK symbols [25]. However, in these stud-
ies, the training and performance calibration was supervised.
Therefore, the active collaboration of the user was required to
obtain knowledge of the labels, hampering usage with severely
affected BCI users. In a similar approach [26], ECoG gamma-
band signals were used to detect attention to one out of two
speech signals with a mean accuracy of 77% for 10 s decision
windows. This was a strongly invasive approach intended for
patients implanted with an electrode array that again required
active collaboration from the user. In comparison with these
examples, our unsupervised approach represents an alternative
to scenarios unsuited for those approaches. While the reported
max-ITRs in Table I are quite low compared to traditional
BCIs with synthetic stimuli, this is a well-known property
of speech-based AAD paradigms [1], [15]. However, we re-
iterate that the presented unsupervised accuracy estimation
algorithm applies to any type of (potentially better performing)
correlation-based paradigm. The chosen linear unsupervised
stimulus decoder should, in this context, be understood as
such an exemplary correlation-based algorithm. Like-wise, the
underlying AAD system of which the accuracy is estimated,
could be further optimized, using other decoders or, for
example, reducing the number of channels in an optimal data-
driven way [27].

VII. CONCLUSION

In this paper, we have proposed a novel method to estimate
the AAD accuracy of a correlation-based stimulus decoder in
an unsupervised manner. This estimation technique is inspired
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by principles of digital communications, modelling the AAD
decision system as a BPSK channel with AWGN.

Using our unsupervised approach, we can very closely
approximate the true average performance of an unsupervised
stimulus decoder and achieve a mean absolute difference of
3.6 pp on a per-subject level. Moreover, with our approach,
we have demonstrated that the optimal combination of min-
imum training duration and decision window length can be
established in an unsupervised manner, and that the amount
of estimation data can be reduced to a few tens of minutes to
achieve a reliable estimation.

The proposed unsupervised estimation of AAD accuracy
opens up many applications, both in neuro-steered hearing
devices (e.g., in time-adaptive decoding, dynamic gain control,
or neurofeedback) and other BCIs. As such, it represents
an important piece of the puzzle in AAD-based systems.
Deploying the unsupervised AAD accuracy estimation in these
applications will bring along various challenges for future
work, such as generalizing the current binary (two-speaker)
setup to multiple speakers using the multi-variate normal
distribution, integrating and evaluating other (more optimal)
correlation-based decoders and setups, and incorporating an
unsupervised estimation of the correlation between attended
and unattended correlations to improve estimation accuracy.

APPENDIX A

As discussed in Section III-B, we assume the attended and
unattended correlation coefficients are uncorrelated to be able
to equate σ2

s with σ2
d. However, the results in Section V-A

show this is untrue for 4 out of 16 subjects, given there is
a significant correlation rau present for these subjects. Note
that the sign of this correlation between the attended and
unattended correlation coefficients changes per subject: for 8
subjects, there is a positive correlation (mean 0.055/st. dev.
0.047), while for the other 8, this is a negative correlation
(mean −0.054/st. dev. 0.054). Furthermore, we showed that
we can explain larger estimation errors in, e.g., Table I, by
the degree of violation of the uncorrelatedness assumption.

If we were able to access or estimate this correlation rau,
we could correct σ2

s to find σ2
d as follows, using Assumption 3:

σ2
d = σ2

s

1− rau
1 + rau

However, we did not find a straightforward way of estimating
this correlation in an unsupervised manner. We have tried di-
rectly estimating σ2

d from Z|d| using the method of moments or
maximum likelihood estimator as in Section III (leading to an
iterative procedure of updating µZ|d| and σ2

d), but this did not
improve estimation w.r.t. Algorithm 1. This is most likely due
to the necessity of iteratively estimating both parameters from
a single distribution Z|d|, allowing estimation errors of one
parameter to leak into the other. If we would have access to this
(ground-truth) correlation, the mean absolute difference would
decrease to 1.26 pp (20 s decision windows, 1000 detections,
25% ho). The maximum absolute difference decreases to 3.15
pp. This shows the added benefit of estimating this correlation,
which is left open as a future challenge.
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