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Abstract— Auditory attention decoding (AAD) is the pro-
cess of identifying the attended speech in a multi-talker en-
vironment using brain signals, typically recorded through
electroencephalography (EEG). Over the past decade, AAD
has undergone continuous development, driven by its
promising application in neuro-steered hearing devices.
Most AAD algorithms are relying on the increase in neu-
ral entrainment to the envelope of attended speech, as
compared to unattended speech, typically using a two-step
approach. First, the algorithm predicts representations of
the attended speech signal envelopes; second, it identifies
the attended speech by finding the highest correlation
between the predictions and the representations of the
actual speech signals. In this study, we proposed a novel
end-to-end neural network architecture, named AADNet,
which combines these two stages into a direct approach
to address the AAD problem. We compare the proposed
network against the traditional approaches, including lin-
ear stimulus reconstruction, canonical correlation analy-
sis, and an alternative non-linear stimulus reconstruction
using two different datasets. AADNet shows a significant
performance improvement for both subject-specific and
subject-independent models. Notably, the average subject-
independent classification accuracies from 56.1% to 82.7%
with analysis window lengths ranging from 1 to 40 seconds,
respectively, show a significantly improved ability to gener-
alize to data from unseen subjects. These results highlight
the potential of deep learning models for advancing AAD,
with promising implications for future hearing aids, assis-
tive devices, and clinical assessments.

Index Terms— Auditory attention decoding (AAD), elec-
troencephalography (EEG), envelope tracking, deep learn-
ing, neural networks, BCI
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I. INTRODUCTION

IN a noisy environment, the human brain demonstrates a
remarkable ability to segregate sound streams, allowing

individuals to focus on the sound of interest while disregarding
the others. For individuals with hearing impairment, this ability
is often significantly deteriorated [1]. Assistive hearing devices
equipped with noise suppression and speech enhancement
algorithms can partially compensate for this deficit. However,
these hearing devices tend to perform poorly in a multi-talker
environment due to a lack of information about the target
talker. Identifying the attended talker, i.e., auditory attention
decoding (AAD), has garnered significant attention from re-
searchers over the past decades due to potential applications
in future neuro-steered assistive hearing devices.

Previous studies have demonstrated evidence of neural en-
coding of different speech features through various recording
methods, such as the speech envelope via EEG signals [2],
spectrogram via electrocorticography (ECoG) [3], and mag-
netoencephalography (MEG) [4]–[6]. As EEG is minimally
invasive and can be integrated into portable devices, following
the study of Aiken et al. [2], the majority of AAD methods are
based on the envelope following response extracted from EEG
signals, and these methods have successfully demonstrated
AAD across various experimental paradigms [7]–[15]. This
approach has become a dominant and well-established method
for addressing the AAD problem. While the aforementioned
methods rely on acoustical features, another explored linguis-
tic and lexical features, such as the onset and surprisal of
words and phonemes, to decode neural responses to speech
[16]. These approaches assume that words and phonemes
are annotated and that language-specific dictionaries with
word and phoneme probabilities are accessible. Additionally,
Raghavan et al. [17] proposed a system that identifies auditory
events using the local maxima in the envelope rate of change,
and utilized masking-specific event-related potential classifiers
to determine the attended sound source, suggesting a new
approach to AAD.

The most common approach used in envelope-based AAD
algorithms is backward modeling in which a decoder is
trained to reconstruct the attended speech envelope. During the
training procedure, the Pearson correlation or the mean square
error between the reconstructed and actual envelopes is used
as the objective function to optimize the model’s parameters.
The reconstructed envelope is then correlated with the actual

ar
X

iv
:2

41
0.

13
05

9v
1 

 [
cs

.S
D

] 
 1

6 
O

ct
 2

02
4



2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2024

envelopes and used as input to an additional classifier to
determine the attended speech stream. Many studies have used
linear decoders across various recording paradigms [7]–[10],
while others have employed non-linear models with different
neural network structures, such as fully connected neural
networks (FCNN) [13], [15], convolutional neural networks
(CNN) [15], long-short term memory (LSTM) [18], and CNN-
LSTM [19], achieving promising results. Generally, the linear
models seem to be consistent and well-established due to
their simplicity (a low number of parameters) and have been
applied across various datasets. The non-linear counterparts
typically have large numbers of parameters and have been
reported to outperform the linear models [15], [18] due to their
capacity to model the nonlinearity of speech processing in the
auditory system. However, most of these non-linear methods
are designed and validated on specific paradigms from the
original studies, and they may not generalize well to different
datasets or recording paradigms. An alternative approach for
backward modeling is forward modeling, which predicts the
EEG response from the speech envelopes. The predicted EEG
is then used to compare with the measured EEG to determine
the attended speech. This approach has been reported to
underperform compared to the backward models [20]. This
result is understandable, given the challenge of predicting
neural responses, as they result from a combination of various
neural activities triggered by multiple internal and external
stimuli, with only the audio being known. Other studies have
attempted a combined forward-backward approach using the
Canonical Component Analysis (CCA) algorithm [12], [21]
to convert both EEG and envelope signals into maximized
correlated latent vectors, followed by a classifier to determine
the attended speech. This approach has been demonstrated to
outperform the other linear decoder methods [22].

Common to the approaches mentioned above is that they
involve two separate stages: training models to convert the
EEG signals and/or the audio envelopes into latent vectors,
calculating the correlation scores, and using a classifier to
decode the attention. Recently, Ciccarelli et al. [14] have
proposed a direct approach using a CNN model that does
not explicitly reconstruct the envelope. This new approach
has been shown to outperform the previous linear and non-
linear envelope reconstruction approaches. However, like the
majority of other AAD studies, this approach has not been
tested for subject-independent models which is an important
yet underdeveloped topic, as pointed out by other authors [23].

This study adopts the direct approach by proposing AAD-
Net, an end-to-end deep learning (DL) model to address the
AAD problem. The model utilizes EEG signals and the audio
envelopes of two speakers, to directly determine the attended
speaker without reconstructing the attended envelopes. To
evaluate the performance of the proposed model, we conduct
a comparison with other state-of-the-art AAD methods: linear
stimulus reconstruction (LSR) [8], CCA [12], and non-linear
stimulus reconstruction (NSR) [15] on two datasets for both
subject-specific (SS) and subject-independent (SI) models.

II. ENVELOPE-BASED AAD ALGORITHMS

As previously mentioned, AAD algorithms predominantly
focus on the correlation between the recorded EEG signals and
the envelope of the attended stimulus. According to Geirnaert
et al. [22], the most robust AAD methods are the LSR and
the CCA model that combines the forward and backward
approaches. Therefore, in this study, we implemented these
methods as least-squares-based baselines to compare with the
proposed method.

The concept of decoding attention based on a stimulus
reconstruction approach is depicted in Figure 1. First, multi-
channel EEG signals and audio signals from each stream are
pre-processed (see Section III-B). Subsequently, the actual
envelopes of the audio signals in each audio stream are
extracted, assuming the demixed speech streams are available.
In the training phase, the envelope of the attended stream and
the EEG signals are used to train a decoder. In the inference
phase, the EEG signals are used to reconstruct the envelope
of the attended stream. The attended stream is determined
as the one whose envelope is most highly correlated with
the reconstructed envelope. The decoder can be constructed
as a linear or non-linear model that maps the EEG data to
the attended or unattended audio envelope. However, as found
by O’Sullivan et al. [8], the attended decoder obtains higher
decoding accuracy than the unattended one does. Therefore,
in this study, we use the attended decoder.
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Fig. 1. Schematic depiction of stimulus reconstruction-based AAD.

A. Linear methods

1) Linear stimulus reconstruction: We implemented the
linear stimulus reconstruction (LSR) model, introduced by
O’Sullivan et al. [8]. For the set of N electrodes, the decoder,
constructed as a spatiotemporal filter, maps the recorded EEG
response to the stimulus envelope as follows:

ŝ(t) =

N∑
n=1

L−1∑
τ=0

g(τ, n)x(t+ τ, n), (1)

where ŝ(t) is the reconstructed envelope signals at time t, x(t+
τ, n) is the recorded EEG signal at time (t+τ) from electrode
n, τ is the time lag index, ranging from 0 to L−1, and g(τ, n)
is the coefficient of the decoder at electrode n and time lag
τ . It is noted that the decoder is anticausal because the audio
stimulus causes the EEG response. The decoder was estimated
to minimize the mean squared error between the original and
the reconstructed envelopes. To prevent overfitting, the ridge
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regularization method [20] is used, leading to the following
solution:

g = (XTX+ Iλ)−1XTS, (2)

where g ∈ RNL×1 is the decoder, collecting all decoder
coefficients for all time lags and channels. Assuming that
there are T envelope samples available, s ∈ R1×T is the
envelope vector, X ∈ RNL×T is the EEG matrix with each
column vector contains all the EEG signals of all time lags and
channels, I is the identity matrix, and λ is the regularization
parameter, which is estimated from a cross-validation approach
from a set of values ranging from 10−2 to 1010 with a
logarithmic step. The time lag τ covers a temporal EEG
context from 0 up to 250 ms post-stimulus, as it has been
found to have the best decoding accuracy [8].

2) CCA: CCA is a multivariate statistical technique used to
analyze the relationship between two sets of variables [24].
The CCA method has been successfully applied to the AAD
problem and has achieved promising results [12], [21]. In
AAD, the goal of CCA is to find an optimal spatiotemporal
linear transform (decoder) wx ∈ RNL×1 on EEG signals
X ∈ RNL×T and a temporal linear transform (encoder) ws ∈
RLs×1 on audio envelopes S ∈ RLs×T to maximize the cor-
relation between the two latent vectors. L and Ls correspond
to the decoder length and encoder length, respectively. The
CCA method can be described as the following optimization
equation:

ŵx, ŵs = argmax
wx,ws

wT
xRxsws√

wT
xRxxwx

√
wT

sRssws

. (3)

By solving a generalized eigenvalue decomposition, the
solution for (3) can be retrieved with a pair of decoders
corresponding to the largest eigenvalue. The solution can be
extended to a set of J pairs of decoders (wx ∈ RNL×J ) and
encoders (ws ∈ RLs×J ) corresponding to J CCA compo-
nents, J = min(L,Ls). J Pearson correlation coefficients
between the outputs J decoders and encoders can be retrieved
accordingly. To determine the attended speaker, in this study,
we used a linear discriminant analysis (LDA) classifier, which
is recommended in literature [21], [22], taking the differences
of J Pearson correlation coefficients of both competing speak-
ers as the input. The encoder length Ls and decoder length
L were set to 1.25 s (pre-stimulus lags) and 250 ms (post-
stimulus lags), respectively, according to the optimal values
used in [22]. The method for determining the J value is
described in Section III-E.

B. Nonlinear methods

1) Non-linear stimulus reconstruction: Another approach is
reconstructing the stimulus envelope using a non-linear model
(NSR). In this study, we implemented the CNN-based network
proposed by Thorton et al. [15] as a baseline method for the
NSR approach. The network was inspired by the EEGNet
architecture developed by Lawhern et al. [25], which com-
prises two main convolutional blocks, one fully connected

(FC) classification layer and employs the exponential linear
unit (ELU) as a nonlinear activation function, as well as
batch normalization (BN) and average pooling. Details of the
network can be found in the original study [15]. Another
notable study using the NSR approach is by De Taillez et
al. [13]. The authors developed a feed-forward neural network
comprising a single hidden layer and an output layer with
other DL features such as ‘tanh’ activation functions, dropout
(DO) [26], and BN. Despite our best efforts to implement and
validate this method, its performance was significantly lower
compared to the other methods, and therefore, the results are
not included here. A similar observation was reported in [22].

2) Proposed direct AAD method:
Inception backbone: Inception is a basic convolutional

block, proposed in GoogLeNet [27] to solve a problem of
object detection and image classification. Figure 2 depicts the
structure of an Inception block. It consists of four parallel
branches. The first three branches are the convolutional layers
with kernel sizes of 1×1, 3×3, and 5×5 respectively. The 1×1
convolution in the first branch transforms the features from
the earlier layers to the later layers (if the network contains
multiple Inception blocks stacked on top of each other) while
the other convolutions in the middle branches extract spatial
features of the input of the current layer. The additional 1× 1
convolutions in the middle branches reduce the number of
input channels and the model’s complexity while the pooling
branch is added in line with traditional CNN networks. The
parallel structure with the 1× 1 convolutions allows networks
built on the Inception block to cover a wider range of local
features and be stacked in an increasing number of stages and
number of units per stage without an uncontrolled blow-up
in computational complexity [27]. The outputs from the four
branches are passed through the Rectified Linear Units (ReLU)
[28] activation function before being concatenated along the
channel dimension. It is important to note that, the number
of output channels of each convolutional module per layer is
a hyperparameter of the Inception block used to control the
capacity of the model among the different kernel sizes. For
clarity, in this study, we refer to the first 1× 1 branch as the
transform branch, the middle branches as feature branches,
and the last branch as the pooling branch.

AADNet architecture: AADNet is a novel envelope-based
end-to-end neural network that utilizes the modified Incep-
tion block to directly classify the attended speaker without
explicitly extracting the audio envelope. The architecture is
depicted in Figure 3. The model comprises two branches: EEG
and audio branches. Both preprocessed EEG signals and audio
envelopes of the competing speakers sequentially go through
a BN layer, a modified Inception block, a 3× 3 max-pooling
layer, and a BN layer. The channel-wise Pearson correlation
between the outputs of the two branches is then calculated to
extract the relationship between the EEG and audio signals.
These correlation values form a feature vector that is flattened
out and goes through a DO, an FC layer, and a Softmax
activation function to determine the probability of each input
audio channel being attended stimulus. It is important to note
that, in the audio branch, the competing envelopes are treated
separately using the same network Inception block because
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the two audio channels are independent. The input label was
determined based on the index of the attended stimulus in the
input audio vector. To prevent the model from being biased
by the index of the stimulus, we duplicated each input data,
switched the indexes of the stimuli, and changed the input label
accordingly to ensure that the attended stimulus was equally
distributed.

In this study, the structure of the Inception block was
adapted for 1-dimensional data and attention-related features
to maximize the AAD performance. Specifically, the Inception
blocks in the EEG and audio branches comprised six and
four parallel branches, respectively. The kernel sizes of the
transform and pooling branches were 1 and 3, as in the original
version. All operations used a stride of 1. For EEG signals,
the kernel sizes of the four feature branches were set to 19,
25, 33, and 39, covering durations of 0.3, 0.4, 0.5, and 0.6
seconds at a sampling rate of 64 Hz. For audio signals, the
kernel sizes of the two feature branches were selected at 65
and 81 corresponding to 1.0 and 1.2 seconds. It is important to
note that the input of the audio branch is the audio envelopes
which were downsampled to 64 Hz (see the preprocessing
step in Section III-B.2). The pooling branch was empirically
omitted since it did not contribute to the overall performance.
Details of kernel sizes, and output channels for each module in
the Inception block of the EEG and audio branches are shown
in Table I. Here, the kernel sizes were selected based on the
potential range that generates the highest correlation between
EEG and audio signals in previous studies [8], [14], [22]. The
main criterion for selecting the number of branches and output
channels per branch was to maximize the number of parallel
filters and an appropriate number of parameters relative to
the dataset size, such that overfitting was avoided. The model
specification in Table I presents the most successful particular
instance tested in our experiments with the two particular
datasets described in Section III-A.

1x1
Convolutions

3x3
Max pooling

1x1
Convolutions

1x1
Convolutions

3x3
Convolutions

Channel
Concatenation

Input

5x5
Convolutions

1x1
Convolutions

Fig. 2. Structure of the Inception block from the original study [27] with
2D convolutions. It is default that there is a ReLU activation function in
each branch before the outputs are concatenated.

III. METHODS

A. Dataset

In this work, we use two datasets recorded using a
competing-talker setup, which has been used in previous
AAD-related studies to address the AAD problem.

TABLE I
SPECIFICATION OF INCEPTION BLOCKS USED IN AADNET.

Conv.(x, k, y, s) REPRESENTS THE CONVOLUTION WITH x = INPUT

CHANNELS, y = OUTPUT CHANNELS, k = KERNEL SIZE, AND s =
STRIDE. N IS THE NUMBER OF EEG CHANNELS, Na IS THE NUMBER

OF AUDIO CHANNELS, Na = 1 AS THE AUDIO STREAMS ARE TREATED

SEPARATELY.

Input
branch

Inception
branch Operation Activation

EEG Transform Conv.(N , 1, 32, 1) ReLU

Feature 1 Conv.(N , 1, 16, 1)
Conv.(16, 19, 8, 1) ReLU

Feature 2 Conv.(N , 1, 8, 1)
Conv.(8, 25, 8, 1) ReLU

Feature 3 Conv.(N , 1, 4, 1)
Conv.(4, 33, 8, 1) ReLU

Feature 4 Conv.(N , 1, 2, 1)
Conv.(2, 39, 8, 1) ReLU

Pooling Conv.(N , 3, N , 1)
Conv.(N , 1, 8, 1) ReLU

Audio Transform Conv.(Na, 1, 1, 1) ReLU

Feature 1 Conv.(Na, 1, 1, 1)
Conv.(1, 65, 4, 1) ReLU

Feature 2 Conv.(Na, 1, 1, 1)
Conv.(1, 81, 4, 1) ReLU

1) Dataset I - EventAAD: Dataset I, referred to as the
EventAAD dataset, was created for investigation of AAD
based on cognitive responses to speech events [29]. The
data set contains four different paradigms, with a gradual
development from sequences of single words towards more
and more natural speech situations. The details can be found
in the original study [29]. In this study, we only used data
from the fourth paradigm, a ‘Cocktail party’ scenario in which
participants were simultaneously presented to two competing
speech streams in Danish (excerpts from two different audio-
books/radio broadcast news) from two loudspeakers placed
one meter from the participant with one placed 60 degrees
to the left and the other 60 degrees to the right. In each trial,
the participants were instructed to pay attention to one stream
while disregarding the other. To sustain the participants’ en-
gagement with the task, the participants were probed with a
question related to the content of the attended stream after each
trial. After the participant responded, feedback was provided
to indicate whether the answer was correct. Each subject
completed 40 trials, with each trial lasting approximately 30
seconds. EEG was recorded from 32 scalp electrodes and
6 electrodes in each ear using two TMSi Mobita amplifiers
with a sampling rate of 1000 Hz. Data was collected from 24
participants. Only the scalp EEG data is used in this study. It
should be noted that the stimuli were synthesized using Google
Text-to-Speech with the male and female voices randomly
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Fig. 3. The architecture of AADNet. T = length of input data, C = number of input EEG data, BN = batch normalization, DO = dropout, FC = fully
connected, and h = output size of the FC1 layer.

selected for both streams in all trials.
2) Dataset II - DTU: Dataset II [30] was collected from 18

healthy subjects in a double-walled soundproof booth using
a 64-channel BioSemi ActiveTwo system and sampled at a
frequency of 512 Hz. The data comprises 60 trials per subject.
In each trial, 50-second long competing speech segments,
narrated by a male and a female speaker, were binaurally
presented to participants through insert earphones in three
simulated acoustic conditions: anechoic, mild reverberation,
and high reverberation. To spatially separate clean speech
signals, the stimuli were simulated using head-related impulse
responses for the two speech streams lateralized at ±60◦ along
the azimuth direction at a distance of 2.4 meters. Subjects were
asked to attend one speaker and ignore the other during each
trial. After each trial, they answered a question related to the
content of the attended speech stream.

Table II summarizes the details of the two datasets.

B. Data pre-processing
In this section, we present the processing steps that were

applied on the two presented datasets for the LSR, CCA,
and the proposed AADNet models. For the NSR model, we
followed the processing steps proposed in the original study
[15].

1) EEG: The EEG data were first band-pass filtered using
a zero-phase FIR filter with cutoffs at 0.5 Hz and 32 Hz
to eliminate slow drift and irrelevant high frequencies. This
frequency band was also applied in various studies [13], [14],
[22] and is reported to be relevant for envelope-based AAD
studies. The data for each channel were then downsampled
to 64 Hz, re-referenced to the average of all channels (32
channels for the EventAAD dataset and 64 channels for the
DTU dataset), and zero-centered. For the NSR model, the
EEG data were band-pass filtered from 0.25 to 36 Hz using
a Hamming window, FIR filter, resampled to 125 Hz, and
standardized to have zero mean and unit variance. The pre-
processing pipeline was implemented using the Python MNE
package version 1.2.0 [31] and SciPy package version 1.10.1
[32].

2) Audio: The audio envelopes were extracted using the
compressed subband envelopes, resembling the processing of
speech signals in the human auditory system [11]. Specifically,
we first applied a gammatone filter bank with an equivalent
rectangular bandwidth (ERB) equal to 1.5 Hz, and center
frequencies ranging from 150 Hz to 4 kHz. The compressed
envelope of each subband was computed with a power law
exponent of 0.6. The final envelope was then obtained by
summing all the subband envelopes. For the NSR model,
the envelopes were extracted by taking the absolute value of
the Hilbert transform of each speech stream. The envelopes
were then low-pass filtered up to 50 Hz using FIR filter,
Hamming window, 12.5 Hz transition bandwidth, and resam-
pled to 125 Hz. The gammatone filter bank was designed
using the COCOHA Matlab toolbox [33]) while both envelope
extraction methods were implemented in Python using the
SciPy package.

C. Evaluation procedure

As pointed out in Rotaru et al. [34], the DL approach
is susceptible to capturing subtle biases, such as within-trial
fingerprints of neural activities even across different subjects.
This may lead to artificially high decoding accuracies. To mit-
igate this potential bias, it is essential to perform appropriate
data splitting into training, validation, and test sets. In this
study, we carefully employ a trial-based cross validation to
evaluate the SS and SI models for all investigated methods.
In the remainder of this paper, we refer to the length of data
used by the models to make a decision as the analysis window
length.

1) SS models: Each subject’s data was divided into eight
folds on a trial basis. Seven of the eight folds were split into
a training set and a validation set in a 4:1 ratio (also on a trial
basis) while the remaining fold was used as the test set. The
data of each trial were further segmented into smaller windows
for training and testing, except when training LSR, CCA, and
NSR models, where the training data were concatenated across
all training trials. The models were trained using the training
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TABLE II
SUMMARY OF THE DATASETS USED IN THIS STUDY.

Dataset No. of
subjects

No. of
trials

Trial
length (s)

No. of
channels Audio presentation Acoustic condition

EventAAD 24 40 25 32
Loudspeakers,
±60◦ relative to front direction,
1 m distance

Shielded with 0.4 s of
reverberation time

DTU 18 60 50 64

Insert earphones,
simulated speaker direction of ±60◦

through a head-related transfer function,
2.4 m distance

Anechoic, mildly,
and highly reverberant

and validation sets and evaluated on the test set to obtain the
performance for each fold. This procedure was repeated for
eight folds. The accuracy of each SS model was calculated as
the average accuracy across the eight folds.

2) SI models: For the SI model, data from one subject were
held out for the test set while the data from the remaining
subjects were used for training and validation. However, the
EventAAD dataset was collected using the same pairs and
order of stimuli for all subjects which could lead to potential
leakage of stimuli information from the training set to the test
set, allowing the model to indirectly learn to perform the AAD
task. This is not the case for the DTU dataset where the order
and pair of stimuli were randomly mixed. To ensure that the
testing data were not from any trial that contained training
and/or validation data, we performed an eight-fold leave-one-
subject-out (LOSO) cross-validation scheme. The data from
the test subject were divided into eight folds. Only one fold
was held out for the test set while the other seven folds
were not used in the current iteration. For all the remaining
training subjects, the single held-out test fold was left out of
the training set, and trials that were not in the test fold were
pooled together across subjects and split into a training set and
a validation set in a 4:1 ratio (based on a trial basis). Models
were trained using the training and validation set and evaluated
on the test set to obtain a fold performance. In this manner, the
trial used for the test subject was not used during training, even
for the other subjects. See Figure 4 for a visual illustration of
the procedure. This procedure was repeated across eight folds.
The accuracy of each SI model was calculated as the average
accuracy across the eight folds.

D. Performance metrics

We used two metrics to quantify the performance of the
investigated models.

1) Classification accuracy: Classification accuracy was as-
sessed as a function of the analysis window length. For
each window length, the test data were transformed into a
data matrix with an overlap of at least 50%. Each stimulus-
reconstruction model (LSR and NSR) predicted the attended
audio using the specified window length of EEG data. The
reconstructed envelope was then compared with the attended
and unattended envelopes using the Pearson correlation. An

� Subject…i…21

1

…

j

…

8

Fold
�

Training set

Validation set

Test set

No use

Fig. 4. Visual illustration of the cross-trial leave-one-subject-out (LOSO)
cross-validation scheme. The data is split for training at fold j when
holding out subject i for testing.

attempt was correct if the correlation score with the attended
envelope was higher than that of the unattended envelope. For
the CCA method, the model attempted to estimate the two
correlation vectors between EEG data and the attended and
unattended envelopes. The difference between the attended
and the unattended correlation vectors was passed through the
binary LDA classifier. The attempt was correct if the output
of LDA was 1 and vice versa. For the AADNet, the output
was considered correct if it matched the input label. Accuracy
was calculated as the ratio of the number of correct attempts
and the number of input data.

2) Minimal expected switch duration: The accuracy metric
described above is a window length-dependent quantifica-
tion. It is expected that the longer the window length, i.e.,
the more information available, the higher the accuracy. To
obtain a more effective performance measurement, we also
calculated the minimal expected switch duration (MESD),
an interpretable performance metric for AAD algorithms in
a context of neuro-steered gain control [35]. The MESD
addresses the trade-off between AAD accuracy and decision
time by modeling an adaptive gain control system in a hearing
device as a Markov chain, and based on that calculating
the minimal expected time required to switch the operation
mode after an attention switch of the user. A lower MESD
corresponds to better AAD performance and vice versa. In
this study, the MESD was calculated using the Python MESD
toolbox [36].
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E. Hyperparameter choice and model training
The hyper-parameters of the linear methods were selected

based on the recommended values used in the original stud-
ies as discussed in Section II. To determine the optimal J
value in the CCA method, we first performed inner cross-
validation on the training data for the LDA model to find the
optimal Jf for each fold from the outer cross-validation of
the CCA model. The final J values for SS and SI models
were obtained by taking the average and grand average of
the Jf , respectively. These final J values were then used
to validate the corresponding CCA models again on the test
data to obtain the final performances. For the NSR model, we
used the recommended hyper-parameters and settings from the
original study and tuned the learning rate.

The proposed AADNet was trained with the Cross-Entropy
loss function using the AdamW optimizer [37] which is
advantageous in decoupling L2 regularization, i.e., weight
decay, from the learning rate so that we have less number of
hyper-parameters to search. The hyperparameters were chosen
via a random search within configurations as follows: batch
size = (32, 64, 128), weight decay = (10−4, 10−3, 10−2,
10−1), dropout = (0.5, 0.4, 0.3, 0.2, 0.1) and number of
output channel of FC1 layer, i.e., hidden units, h = (32, 16,
0). In the case of h = 0, the ELU, DO, BN, and FC2 after
the FC1 layer were omitted. The learning rate was fixed at
10−5. During the training process, the model was saved if the
validation loss decreased and the training process was stopped
if the validation loss did not decrease in at least 1 out of 5
consecutive epochs. Although AADNet is flexible regarding
input window length, we trained different models per window
length to maximize the performance. Due to limited data sets
for SS models that potentially lead to overfitting, for the CCA,
NSR and the proposed AADNet models, we started training
the SI models first and used the saved model to fine-tune the
SS models for the subject that was left out. We only fine-tuned
the very last FC layers (LDA model for the CCA method) with
smaller tuned learning rates.

The LSR cross-validation method was imple-
mented using the Scikit-learn package [38] with
linear model.RidgeCV function while the CCA
method uses cross decomposition.CCA and
discriminant analysis.LinearDiscriminant-
Analysis functions. The NSR and AADNet were
implemented using the Pytorch framework [39].

IV. RESULTS

A. SS models
Decoding accuracies of the SS models for each method on

the EventAAD and DTU datasets are shown in Figure 5(a)
and Figure 5(c), respectively. The box plots represent the
accuracy distribution across 24 subjects for the EventAAD
dataset and 18 subjects for the DTU dataset. The chance
performance was computed as the 95th percentile point of a
binomial distribution with p = 0.5 and n equal to the number
of non-overlapping windows in the test set. We compared
the difference between the proposed AADNet and the other
baseline methods and tested the significance using the paired

permutation test [40] with the Bonferroni correction. The
tested results are shown at the bottom of the figures. On the
EventAAD dataset, the mean accuracy increases from 0.573 at
1 s up to 0.802 at 20 s. For the DTU dataset, mean accuracies
of 0.619 and 0.88 were obtained at window lengths of 1 s and
40 s, respectively. Notably, it is observed that the AADNet
model significantly outperforms all baseline methods across
all window lengths on the EventAAD dataset (p < 0.01), and
short window lengths (up to 5 s) on the DTU dataset.

Additionally, we calculated the per subject MESD values for
each model on both datasets and showed them in Figure 5(b)
and Figure 5(d), respectively. The significant differences in
the median values between the proposed model and the other
were also tested using paired permutation tests. We found that
the proposed AADNet generates significantly lower MESD
values (23.0 s on the EventAAD dataset and 11.8 s on the
DTU dataset) compared to other models.

B. SI models

To evaluate how well AADNet generalizes to new subjects,
we performed the SI validation scheme described in Sec-
tion III-C.2. The results of SI models are shown in Figure 6.
Similar to the SS results, Figure 6(a) and Figure 6(c) present
the test accuracies across subjects while Figure 6(b) and
Figure 6(d) present the MESDs. Generally, the SI models ob-
tained a consistently lower performance compared to the cor-
responding SS models (see Table III). The results demonstrate
that AADNet significantly outperforms the other methods for
all window lengths on the EventAAD dataset with mean
accuracies reaching up to 0.785 at 20 s. For the DTU dataset,
EEGNet obtains significantly higher accuracies for window
lengths greater than 2 s and reaches 0.827 at 40 s. At 1 s, the
AADNet and CCA models obtained a similar performance
with accuracies of 0.561, and 0.562, respectively. Regarding
MESD, AADNet achieves significantly lower values with 31.7
s and 29.2 s on the EventAAD and DTU datasets, respectively.

TABLE III
PERFORMANCE DROP (IN PERCENTAGE POINTS) OF SI MODELS

COMPARED TO CORRESPONDING SS MODELS.

Dataset Models Window lengths (s)
1 2 5 10 20 40

EventAAD

LSR 0.1 0.5 0.6 1.0 1.6
CCA 0.5 1.1 1.4 1.7 0.8
NSR 0.2 0.2 0.2 0.6 0.5

AADNet 0.5 1.2 1.9 1.1 1.9

DTU

LSR 4.0 6.0 8.8 10.7 10.5 11.7
CCA 2.0 3.9 5.3 6.0 6.7 9.3
NSR 3.2 4.1 6.5 8.6 10.4 10.9

AADNet 5.8 5.7 6.8 7.5 6.1 5.3

V. DISCUSSION AND CONCLUSION

A. Classification performance

In line with most AAD studies, we started by training
SS models and evaluating them using a multi-fold cross
validation. However, we found unexpectedly low performances
of the CCA, NSR, and AADNet models. While the exact
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Fig. 5. Comparison of the SS models on the two datasets. (a), (b) The accuracies and MESD of the four methods on the EventAAD dataset. (c),
(d) The accuracies and MESD of the four methods on the DTU dataset. The number of data points with an MESD of > 100 s is indicated as (+x)
and were included in the computation of the medians. Statistical significance is denoted by asterisks (None: p ≥ 0.05; *: 0.05 > p ≥ 0.01; **:
0.01 > p ≥ 0.001; ***: 0.001 > p.

reason for this is unclear, we conjecture that it is due to
the higher number of parameters in these models. In con-
sequence, the training requires a larger amount of data and
the models are more susceptible to overfitting. This is par-
ticularly the case for the SS models and less of a problem
for the SI models. To address this challenge, the SS models
were trained by finetuning the pretrained SI model, achieving
promising results. As shown in Figure 5, the proposed model
outperformed the baseline methods on both datasets except
for the DTU dataset with window lengths greater than 5 s
where it achieved a comparable performance with the LSR
method. This performance advantage could be attributed to two
main factors: the nonlinearity and parallelized spatiotemporal
convolutions, which allow the model to more accurately learn
the audio representation in the human auditory system and
capture the relationship between the audio stimulus and the
brain signals.

We also trained and evaluated SI models using the cross-
trial LOSO validation scheme. Although all models yielded
accuracies significantly above the chance performance, there
was a consistent drop in performance compared to the corre-
sponding SS models. This difference is somewhat expected,
as the SS models, unlike the SI models, are fine-tuned to
capture the unique characteristics of individual subjects. The
results in Figure 6 showed a superior performance of the
proposed AADNet compared to the other methods with a
gap of 4.2 percentage points on the EventAAD dataset and
4.6 percentage points on the DTU dataset at the longest
window length to the best baseline method. This demonstrated
a better generalization for new subjects. We attribute this
improvement to the multiple parallelized convolutions in the
Inception structure which provides extensive coverage across
subjects. Even though the improvement may seem modest,
it could have a valuable contribution to the AAD field due
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Fig. 6. Comparison of the SI models on the two datasets. (a), (b) The accuracies and MESD of the four methods on the EventAAD dataset. (c),
(d) The accuracies and MESD of the four methods on the DTU dataset.

to the training-free advantage of the SI model for the new
subject. This advantage makes the SI model more feasible
to be integrated into real-life applications. Furthermore, the
limitation of SI models at 1 s window necessitates future work
to investigate a more advanced model to generalize better at
short window lengths.

In regard to MESD, we showed that the proposed AADNet
consistently and significantly obtained the lowest MESD val-
ues for both SS and SI models on both datasets. Since MESD
represents the minimal expected time for an AAD-based gain
control system to switch operation modes, these improvements
demonstrated that the proposed AADNet holds a promise for
integrating the AAD algorithm into a real-time gain control
system of hearing-assistive devices.

B. Limitations
In this study, only four approaches were considered: a linear

(LSR) and a non-linear (NSR) backward model, a forward-
backward combined model (CCA), and the proposed direct

classification model. We did not test the forward approach as
it is an underperforming method [20]–[22]. Moreover, there
have been several studies using neural networks and different
features to solve different attention-decoding tasks, including
speaker identification (SpkI) [9], [13]–[15], [41] and locus of
attention (LoA) [42]–[45]. It is challenging to make a direct
comparison across these studies due to variations in datasets,
used features, tasks, and analysis window lengths used to
report results. Here, only the methods in the SpkI task that
exploit the envelope-following response are included. For the
sake of completeness and transparency, it must be mentioned
that we also implemented the methods proposed by De Taillez
et al. [13] and Ciccarelli et al. [14]. However, despite our
best efforts in implementation and validation, these methods
performed significantly worse than others, so their results are
not included here. A similar observation was reported in [22].
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C. Deep-learning methodology for direct AAD

This study aimed to enhance AAD by proposing a deep
learning model that directly classifies the attended audio stim-
ulus. We developed an end-to-end neural network to address
the AAD problem and achieved a significant improvement
in performance compared to other baseline methods. In the
remainder of this section, we discuss the advantages and
disadvantages of the proposed AADNet as well as the DL
approach to consider in future work to leverage the AAD
performance.

The architecture of the network was inspired by the Incep-
tion block, which comprises multiple convolutional branches.
The convolution in each branch acts as a spatiotemporal filter
to capture how the speech is encoded in the neural response.
The kernel size plays a role in limiting this relationship with a
specific time delay. This structure allows the model to combine
information in a way similar to the CCA method. However, in
the CCA method, the optimal filter length may not work well
for a wide range of subjects and datasets. With the parallel
structures, in principle, we can add as many branches with
different kernel sizes to cover a given available dataset as long
as the dataset is sufficiently large for training, and therefore
have better generalization.

The convolutional kernel size of 1 also plays an important
role in constructing the network. In the transform branch, it
helps transfer features from the previous layers and bypass
the current layer if the features in that layer are not relevant.
This allows us to construct a deeper neural network while
maintaining control over the model’s complexity. This feature
is crucial for improving the capability of models that address
problems involving small datasets like AAD or other EEG-
based applications. Additionally, the kernel size of 1 in the
feature layer also plays a role in channel selection to reduce
irrelevant information and therefore somewhat prevents the
model from overfitting, a common issue in BCI applications.

Another important design of the network in this study is
the multi-audio input. This allows the network, at any time
point during the training phase, to have access to all audio
streams and have a higher degree of freedom to pick relevant
features to maximize the difference between audio streams.
This is different from the previous AAD studies where the
models were forced to find the relationship between the brain
response and the attended/unattended stimulus. Additionally,
this structure allows us to straightforwardly extend the model
to deal with more than two competing speakers and easily
augment the data by shuffling the order of audio stimuli. This
data augmentation, in turn, could eliminate the potential biases
in directional attention, which are inevitable in some datasets,
as pointed out in [34].

A common challenge with DL models is that they require
significantly more data to achieve good performance compared
to less complex models. This is indeed also a challenge
in AAD, where data sets are very limited, and collecting
additional data is very resource-intensive. However, ongoing
advancements in DL methods, such as more sophisticated
architectures like the Inception structure and improved training
methodologies in transfer learning and regularization tech-

niques, are progressively alleviating the issue of limited data.
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