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Abstract. Objective. In this study, we use electroencephalography (EEG) recordings

to determine whether a subject is actively listening to a presented speech stimulus.

More precisely, we aim to discriminate between an active listening condition, and a

distractor condition where subjects focus on an unrelated distractor task while being

exposed to a speech stimulus. We refer to this task as absolute auditory attention

decoding. Approach. We re-use an existing EEG dataset where the subjects watch a

silent movie as a distractor condition, and introduce a new dataset with two distractor

conditions (silently reading a text and performing arithmetic exercises). We focus on

two EEG features, namely neural envelope tracking (NET) and spectral entropy (SE).

Additionally, we investigate whether the detection of such an active listening condition

can be combined with a selective auditory attention decoding task, where the goal is to

decide to which of multiple competing speakers the subject is attending. The latter is

a key task in so-called neuro-steered hearing devices that aim to suppress unattended

audio, while preserving the attended speaker. Main results. Contrary to a previous

hypothesis of higher SE being related with actively listening rather than passively

listening (without any distractors), we find significantly lower SE in the active listening

condition compared to the distractor conditions. Nevertheless, the NET is consistently

significantly higher when actively listening. Similarly, we show that the accuracy of a

selective auditory attention decoding task improves when evaluating the accuracy only

on the highest NET segments. However, the reverse is observed when evaluating the

accuracy only on the lowest SE segments. Significance. We conclude that the NET

is more reliable for decoding absolute auditory attention as it is consistently higher

when actively listening, whereas the relation of the SE between actively and passively

listening seems to depend on the nature of the distractor.

Keywords : Absolute auditory attention decoding, Selective auditory attention decoding,

EEG, Neural envelope tracking, Spectral entropy, Neuro-steered hearing device, Brain-

computer interface.
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1. Introduction

The human auditory system is able to focus on a single speaker of interest while filtering

out competing (auditory) stimuli, a process called selective (auditory) attention [1].

Recently, there has been an interest in algorithms that are able to decode this selective

auditory attention based on neural activity, e.g. recorded with electroencephalography

(EEG) [2]. In the literature, this task is often referred to as the ‘auditory attention

decoding’ (AAD) problem [3–6]. However, we will refer to it as ‘selective’ auditory

attention decoding (sAAD) to emphasize its goal of selecting one attended stimulus

among multiple competing auditory stimuli. This terminology is introduced to

distinguish it from another type of attention decoding, which we term ‘absolute’ auditory

attention decoding (aAAD). In aAAD, the objective is to determine whether a subject is

actively listening to any of the presented auditory stimuli or none of them [7–9]. Indeed,

our brain is able to ignore all surrounding sounds, e.g., when focusing on an unrelated

task, in which case an sAAD task would have no meaning. The sAAD problem, often

referred to as just ‘AAD’ has been extensively studied, while the aAAD problem, which

is a different variant of AAD, has received much less attention in the literature. Figures

1(a) and 1(b) illustrate this difference between the sAAD and aAAD problems.

As shown in figure 1(a), more specifically, sAAD algorithms aim to discriminate

between the attended and unattended speakers based on the subject’s neural activity

and auditory stimuli of the speakers involved. At validation time, sAAD algorithms then

aim to decode to whom the subject is listening. Contrarily, in the aAAD task (figure

1(b)), the algorithms are trained to detect the absolute state of auditory attention, i.e.,

to discriminate between an active or passive listening state of the subject. Note that

while sAAD by definition assumes multiple competing speakers, aAAD can be performed

in both a single- or a multi-speaker setting.

It has been shown that selective auditory attention can be decoded from EEG

recordings, either based on the principle of neural envelope tracking (NET) [3, 10–12],

or based on differences in the general neural activity [5, 6]. The former is based on the

principle of neural response tracking. The neural response tracks certain characteristics

of a speech stimulus, such as its envelope (i.e., the slow variations) over time [3, 9–12].

NET-based sAAD algorithms then exploit this neural tracking of the speech envelope

being more strongly present for the attended speaker than for the unattended ones.

As an alternative to NET, there exist sAAD algorithms that exploit differences in

the neural activity itself, i.e., without using the auditory stimuli. For example, one

can detect differences in the neural activity depending on the location of the attended

stimulus [5, 6].

Literature about aAAD, i.e., discriminating actively versus passively listening is less

extensive. In this work, we will extract two features from the EEG to perform aAAD,

namely the NET and the spectral entropy (SE). As detailed supra, the NET characterises

the tracking of the speech envelope by the neural response, and we hypothesize that this

tracking disappears or decreases when the subject is not actively attending the speech.
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Figure 1. Overview of selective auditory attention decoding (sAAD), absolute

auditory attention decoding (aAAD), and their combination. (a) In sAAD, multiple

speakers are simultaneously present at each given moment. At training time, the audio

from the attended and unattended speakers is leveraged, together with the neural

activity of the subject listening, to train discriminative features and classifiers for

sAAD. At validation time, these are subsequently used to discriminate which stimulus

the subject is attending on held-out data. (b) Contrarily, in aAAD, the subject is

either actively or passively listening to a speaker. At training time, the data are again

leveraged to train the features and classifiers. At validation time, these are then used

to assess whether the subject is actively listening or not on held-out data. (c) Both

setups can be combined, where the sAAD accuracy is evaluated only on segments

where actively listening is signalled by the aAAD algorithms, in order to avoid making

arbitrary decisions due to the inattentiveness of the subject.

The SE, on the other hand, is a spectral EEG feature inspired by the concept of entropy,

which is a measure of uncertainty of a random variable [13]. This SE has previously

been hypothesised to predict regularity and predictability of the EEG [14–16].

Regarding the NET, Vanthornhout et al. [8] found significantly higher NET of

subjects actively attending an auditory stimulus than that of subjects watching a silent

movie, while ignoring the auditory stimulus. To quantify this NET, Vanthornhout et

al. [8] trained linear decoders to reconstruct the speech envelope from the EEG. The

resulting correlation between the reconstructed envelope and the ground truth envelope

was shown to be significantly higher when actively focusing on the auditory stimulus.

Kong et al. [7] investigated a similar scenario using the peak cross-correlation between

the EEG and the speech envelope as a measure for the NET (without applying a neural

decoder to potentially enhance this correlation). However, no difference across the active

versus passive listening conditions was found in this study.

Regarding the SE, it has been shown experimentally that the SE was able to

correctly predict anaesthetic depth [14,15], respiration movements [15], sleep stages [15],

and imagined finger movement [15], possibly due to changes in EEG regularity and

predictability [14, 15]. Similarly, the SE allowed to discriminate subjects in rest from

subjects performing mental arithmetic [17], and subjects in rest from subjects fixated on

flashing patterns [16]. Lesenfants et al. [9] used the SE to quantify the level of sustained
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attention to an auditory stimulus. In this study, subjects were instructed to attend

to an auditory stimulus, without any distractor conditions. The SE was then used to

discriminate between high and low active listening segments, which are assumed to arise

naturally as the subject’s focus might vary during the task. Lesenfants et al. [9] found

that training linear NET decoders on high SE segments resulted in an improved NET

decoding when evaluating on the full validation set. Given this improved NET decoding

when training linear NET decoders on high SE segments, Lesenfants al. [9] concluded

higher SE levels to correspond to higher auditory attention levels.

NET- and SE-based aAAD functionalities could be useful as an objective, general

tool to measure the state of active listening during auditory EEG experiments. In

addition, aAAD algorithms hold promise to be combined with sAAD algorithms. Indeed,

advances in sAAD algorithms have recently been envisaged as a key ingredient towards,

a so-called neuro-steered hearing device [2]. To improve speech intelligibility and

speech quality, state-of-the-art hearing devices require speech enhancement algorithms

to enhance the speaker of interest while suppressing other speakers. These speech

enhancement algorithms currently use sub-optimal heuristics, such as assuming the user

is facing the desired speaker, which are not always satisfied in everyday situations [2].

In neuro-steered hearing devices, the idea is to use sAAD algorithms to decode to

whom the user is listening to control the speech enhancement algorithm of a hearing

device, such that it can decide which speaker should be enhanced and which speakers

should be suppressed in a multispeaker scenario [2]. Nevertheless, in these neuro-steered

hearing devices, the sAAD algorithms consequently assume the subject is always actively

listening to any one of the competing speakers. However, the sAAD algorithms should

be disabled whenever the subject is not actively listening to any of the speech stimuli to

avoid arbitrary speaker selections. Consequently, we will combine the aAAD and sAAD

algorithms as illustrated in figure 1(c) by only evaluating the sAAD algorithm whenever

active listening is signalled by the aAAD algorithm. In particular, we will investigate

whether the NET and/or SE features are suited for aAAD in such a combined setting.

In summary, in this paper, we aim to decode whether or not a subject actively listens

to a single speaker (aAAD) in different distractor conditions. To this end, we introduce

a new EEG dataset with 10 subjects, wherein subjects are asked to either actively listen

to a speech stimulus or to ignore it while silently reading a text or solving arithmetic

exercises. Next to this dataset, we reuse a dataset from Vanthornhout et al. [8] in

which the distractor condition consists of watching a silent movie. We then investigate

whether both NET and SE can distinguish between the active listening condition and

any of these distractor conditions. Finally, we combine this with an sAAD task with

two competing speakers, in which the attended and unattended speaker needs to be

discriminated. Segments labelled as passive listening by the NET and SE features are

removed at validation time, attempting to take out segments in which the subject is not

paying attention to any of the speakers, hence for which no truthful sAAD decision can

be made.

Our research is complementary to, yet distinct from, the work of Vanthornhout
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et al. [8] and Lesenfants et al. [9]. First, we focus on natural speech within a broader

scope of conditions, as opposed to the work of Lessenfants et al. [9], where no distractor

conditions were present, and to the work of Vanthornhout et al. [8], where only a silent

movie distractor condition was used and where only artificial, standardised sentences

were used as speech stimuli at validation time, requiring little semantic processing in

the brain. Second, we compare both the NET and SE features to discriminate between

the active listening condition and distractor conditions, whereas the previous studies

focused on either one of them and consequently do not have such a direct comparison.

Finally, we apply aAAD to the sAAD task by only evaluating the sAAD accuracy on

segments where the subject is signalled to listen actively, in order to support the use of

aAAD in neuro-steered hearing devices.

We will demonstrate that higher SE does not necessarily correspond to higher

auditory attention (as hypothesised by Lesenfants et al. [9]), i.e., SE shows different

trends depending on the choice of the alternative (passive listening) condition. Contrary

to the hypothesis of Lesenfants et al. [9] where actively listening was associated with

a higher SE, we find a lower SE in subjects actively listening compared to subjects

passively listening while watching a silent movie, performing arithmetic exercises and

silently reading a text. Nevertheless, the sAAD accuracy decreases when only evaluating

this sAAD accuracy on low SE segments. Consequently, the relation for SE between

actively and passively listening seems to depend on the specific distractor task, rather

than the absolute state of auditory attention. The SE, as such, seems to be a measure

of cognitive resources spent on a specific task, rather than being a measure of auditory

attention. The NET metric, on the other hand, shows consistent behaviour, i.e., it

is always higher in the active listening condition compared to the passive listening

condition, and the sAAD accuracy increases when only evaluating sAAD accuracy on

high NET segments. NET therefore seems the better choice for aAAD.

This paper is structured as follows. First, we describe the algorithmic methodology

to extract the NET and SE features for aAAD (Section 2). Second, we briefly review

the sAAD task and methodology (Section 3). The datasets, data processing, and

experimental setup are subsequently described (Section 4). The corresponding results

are presented (Section 5) and discussed (Section 6) thereafter. Finally, the conclusions

are drawn (Section 7).

2. Absolute auditory attention decoding

To decode whether a subject is in a state of active listening, i.e., perform aAAD, we

will extract two features from the EEG:

(i) Neural envelope tracking (NET): In the presence of a speech stimulus, the

neural response tracks certain characteristics of that speech stimulus, such as its

envelope, i.e., the slow variations over time [3, 9–12]. This envelope tracking is

hypothesised to be more strongly present when the subject is more attentive to the

speech [3, 8].



EEG-based decoding of absolute auditory attention to natural speech vi

(ii) Spectral entropy (SE): Different tasks or conditions result in different neural

activity across the brain [6, 9, 14, 16–18]. These differences in neural activity can,

e.g., be quantified using the SE of the EEG recorded at a particular scalp location.

The SE is hypothesised to quantify the predictability or regularity in the EEG

activity, and quantifies the peakedness of the power spectral density (PSD) of

the neural activity in the EEG indicating distinct oscillations, as will be detailed

infra [9, 14–17]. Lesenfants et al. [9] hypothesised that the SE is higher in active

listening compared to passive listening conditions.

The NET feature is discussed first (Section 2.1), and the SE feature thereafter (Section

2.2).

2.1. Neural envelope tracking

To evaluate the degree of envelope tracking, a decoder consisting of a linear spatio-

temporal filter is applied to the EEG signals to reconstruct the envelope of the speech

stimulus. This is commonly achieved by minimising the squared error between the

original and reconstructed speech envelope [3, 4, 8]. The degree of envelope tracking

can subsequently be assessed by computing the correlation coefficient ρ(.) between the

reconstructed and ground truth envelope.

Let y(t) represent the target speech envelope at sample time t, and xc(t) the

sample of the c-th EEG channel at sample time t. Further, denote C as the number

of EEG channels, T as the number of training samples, and L as the number of time

lags. The goal is then to reconstruct the T subsequent target speech envelope samples

y =
[
y(0) y(1) · · · y(T − 1)

]⊤
∈ RT×1 from channel-concatenated and time-lagged

EEG signals X ∈ RT×LC , defined as:

X =
[
X1 X2 · · · XC

]
(1)

Xc =


xc(0) xc(1) · · · xc(L− 1)

xc(1) xc(2) · · · xc(L)
...

...
...

xc(T − 1) 0 · · · 0


.

(2)

This reconstruction is achieved by designing a decoder d̂ ∈ RLC×1 that minimises the

squared error between the ground truth envelope y and the reconstructed envelope

Xd [3, 19]:

d̂ = argmin
d

||y −Xd||22, (3)

of which the solution equals [3, 19]:

d̂ = (XtX)−1Xty (4a)

= R−1
xx rxy. (4b)

Herein, Rxx ∈ RLC×LC and rxy ∈ RLC×1 respectively denote the estimated EEG auto-

correlation matrix and EEG-envelope cross-correlation vector.
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At validation time, this decoder is applied to the validation data that were held

out during training. The EEG data X(val) ∈ RTv×LC are then used to reconstruct the

speech envelope ŷ ∈ RTv×1 of length Tv:

ŷ = X(val)d̂. (5)

The correlation ρ(ŷ,y(val)) between this reconstructed envelope ŷ and the ground

truth envelope y(val) ∈ RTv×1, computed over Tv samples, is hypothesised to be higher

when actively listening [8]. Therefore, we use this stimulus correlation as a first feature

to discriminate between actively and passively listening. As per Vanthornhout et al. [8],

the Spearman correlation coefficient, a rank-ordered Pearson correlation, is used in this

work [20]. We will show that accordingly, the NET is higher when actively listening

than when passively listening while performing arithmetic exercises and silently reading

a text (Section 5.1).

2.2. Spectral entropy

The entropy is a measure for the uncertainty of a random variable by characterising the

peakedness of the probability density function [13]. Herein, large entropy values map

to high uncertainty and hence lower predictability. The entropy can also be applied

to a normalised PSD‡ in the frequency domain to describe the peakedness of this

PSD [14, 17]. As the entropy is then applied in the frequency domain, it is referred

to as spectral entropy (SE) [14, 17]. This so-called SE can be hypothesised to be used

to leverage spectral differences, where higher SE levels correspond to less predictability

in the neural activity. Let Pxc(f) ∈ R represent the normalised PSD estimate of the

EEG signal xc(t) in channel c, then the SE in channel c and across the frequency band

f1 − f2 is defined as:

SEc [f1 − f2] = −
f2∑

f=f1

Pxc(f) log2 (Pxc (f)). (6)

Previously, this SE allowed to the predict anaesthetic depth [14, 15], respiration

movements [15], sleep stages [15], and imagined finger movement [15]. In addition, the

SE allowed to discriminate between subjects in rest from subjects performing mental

arithmetic [17], and subjects in rest from subjects fixated on flashing patterns [16]. It was

hypothesised, that this predictive and discriminative power arises from the regularity

and predictability differences in the EEG activity as characterised by the SE. Lesenfants

et al. [9] hypothesised that higher SE values are associated with higher levels of auditory

attention, as training decoders on the high SE segments outperformed the decoders

trained on the low SE segments when evaluating on the full validation set. We will

show that contrary to these results, lower SE is found when actively listening than when

passively listening while watching a silent movie, silently reading a text and performing

arithmetic exercises (Section 5.1). Consequently, we will conclude that the SE seems to

‡ The normalisation here refers to a division with the area under the curve of the PSD, such that its

sum across the frequency axis is equal to one, similar to a probability density function.
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be a measure of cognitive resources spent on a specific task, rather than being a measure

of absolute auditory attention.

3. Application to selective auditory attention decoding

As opposed to decoding when the subject is attentive or inattentive to a specific speech

stimulus, in the sAAD setting, we aim to decode to which speaker the subject is

attending in a multi-speaker scenario [2–4]. This corresponds to a selective auditory

attention setup, as illustrated in figure 1(a). These sAAD algorithms are envisaged to

be applied in so-called neuro-steered hearing devices, where the sAAD algorithms signal

to the speech enhancement algorithm what speaker to enhance and what speakers to

suppress [2].

As higher NET has been found for the attended speaker than for the unattended

speakers, NET decoders can be used to discriminate between them [2–4]. The decoder

for sAAD d̂sAAD ∈ RLC×1 is computed using the envelope ya ∈ RT×1 of the attended

speaker, while the envelope(s) of the unattended speaker(s) is not used during training

[2–4,19]:

d̂sAAD = arg min
dsAAD

= ||ya −XdsAAD||22. (7)

At validation time, the output of the decoder is correlated with the speech envelopes of

all speakers over Tv samples. The speaker that yields the highest correlation ρ(.) between

the reconstructed envelope ŷ = X(val)d̂sAAD and the speaker envelope y
(val)
i ∈ RTv×1

(for speaker i) is decoded as the attended one [3,4,19]. In the case of two speakers, the

decision process can be described as:

If ρ
(
ŷ, y

(val)
1

)
> ρ

(
ŷ, y

(val)
2

)
, Speaker 1 attended

If ρ
(
ŷ, y

(val)
1

)
< ρ

(
ŷ, y

(val)
2

)
, Speaker 2 attended,

(8)

and the sAAD accuracy can be calculated as the percentage of correct decisions.

As illustrated in figure 1(c), both aAAD and sAAD could be combined in such a

neuro-steered hearing device. The aAAD algorithm could then be used to detect the

segments where the subject is signalled to be in a state of active listening. By only

using these segments corresponding to actively listening, we hypothesise that the sAAD

decision process will improve the percentage of correct decisions.

4. Experimental procedures

To validate our methods, a new dataset was recorded, which is complementary to the

datasets of Vanthornhout et al. [8] and Das et al. [21], which will also be used in our

study. The dataset descriptions are given first (Section 4.1) and the description of how

the corresponding data are processed thereafter (Section 4.2). The experimental setup

is subsequently formulated (Section 4.3), as well as the statistical tests (Section 4.4).
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4.1. Datasets

In this work, we utilise three datasets: Dataset I is a newly recorded dataset that deals

with subjects attending to an auditory stimulus versus subjects ignoring that stimulus

while focusing on silently reading a text or solving arithmetic exercises. Dataset II

originates from the work of Vanthornhout et al. [8] where subjects were either instructed

to attend to an auditory stimulus or to ignore that stimulus while focusing on a silent

movie. Finally, Dataset III is an sAAD dataset collected by Das et al. [21].

4.1.1. Dataset I

Goal: The goal of this experiment is to investigate the neural differences between a

setting where the subject is actively listening to a speech stimulus, and a distractor

condition where the subject ignores the auditory stimulus while focusing on silently

reading a text or solving arithmetic exercises.

Subjects: 10 Dutch-speaking subjects (5 male, 5 female), between 21 and 27 years

old, participated in the experiment. These subjects were unpaid volunteers and signed

an informed consent, approved by the Social-Societal Ethics Committee at KU Leuven.

Experiments were conducted according to these regulations.

Equipment: A 24-channel Smarting mobile EEG recording system was utilised [22].

The experiment was conducted in a non-radio frequency shielded room and the scalp

of the subjects was treated with electroconductive gel while fitting the EEG cap. Raw

EEG data were converted into MATLAB-compatible files using OpenVibe software [23].

Presentation structure: The speech stimuli consisted of children stories in Dutch [24],

which were continuously presented to the subjects. While the speech stimuli were

presented, the auditory attention of the subjects was manipulated by instructing the

subjects to complete different tasks. To this end, the experiment consisted of three

parts, possibly split into trials. During these parts and trials, the auditory attention

was manipulated according to the following conditions, where the naming convention

denotes to what task the subjects were instructed to pay attention to while the speech

stimuli were continuously presented in all conditions:

• ‘Audio’: The subjects were instructed to attend to the presented speech stimulus.

To engage the subjects, they were told upfront that a questionnaire, concerning the

content of that auditory fragment, had to be filled out at the end of the trial/part.

• ‘Mathematics’: To reduce the auditory attention, the subjects needed to solve as

many arithmetic exercises (e.g., 1012 − 448 = 564) as possible within one minute

while ignoring the speech stimulus. The subjects were informed that no questions

in the questionnaire would originate from those fragments of the story during which

the arithmetic exercises had to be conducted.

• ‘Audio-Question’: To increase the auditory attention, the subjects were

instructed that a question was certainly to be asked about the content of this

one minute fragment in the story.
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• ‘Text’: To reduce the auditory attention, the subjects were instructed to silently

read a text while ignoring the speech stimulus. As before, subjects were informed

in advance to fill in a questionnaire at the end of the part. In this condition,

however, the questionnaire related solely to the content of the text, resulting in a

no-attention condition to the speech.

An overview of the presentation structure of the conditions within each part and

trial can be found in figure 2.

0′0′′ 18′0′′

Part 1 - Trial 1
Time

0′0′′ 25′0′′1′20′′ 4′20′′ 6′55′′ 12′13′′ 15′40′′ 19′10′′ 22′10′′

Part 2 - Trial 1
Time

1′0′′

0′0′′ 15′0′′1′25′′ 4′27′′ 7′50′′ 12′42′′

Part 2 - Trial 2
Time

0′0′′ 13′0′′

Part 3 - Trial 1
Time

Audio
Mathematics
Audio-Question
Text

Figure 2. The presentation structure of Dataset I. The naming convention refers to

the task the subjects were instructed to pay attention to while the speech stimuli were

continuously presented in all conditions. During part 1, the subjects were instructed

to attend an auditory stimulus and answer questions about the content afterwards

(‘Audio’). During part 2, this structure was interleaved with specific tasks to be

completed in order to modulate the subjects’ state of auditory attention. During

the ‘Mathematics’ task, subjects needed to solve arithmetic exercises, reducing the

auditory attention. During the ‘Audio-Question’ task, subjects needed to increase

their auditory attention as a question certainly was to be asked about this fragment.

Part 2 was split into two trials. During part 3, the subjects were instructed to silently

read a text while ignoring the auditory stimulus.

The first part consisted solely of the ‘Audio’ condition, where the subjects were

instructed to listen to the story ‘Bianca en Nero’ for 20 minutes. In the second part, the

‘Audio’ condition was interleaved with two different tasks, namely the ‘Audio-Question’

condition to increase the auditory attention and the ‘Mathematics’ condition to decrease

the auditory attention. This part was split into two trials, corresponding to the lengths

of the used speech stimuli, and to give the participants a break. The story ‘Ver van

het kleine paradijs’ was used as speech stimulus in the first trial, and ‘Milan’ in the

second trial. The final, third part consisted of the ‘Text’ condition, where the subjects

were instructed to silently read a text while ignoring the speech stimulus. This text was

provided as a printed document, and corresponded to a Dutch version of the short story

‘Vergif’ written by Roald Dahl [25]. The story ‘Eline’ was used as speech stimulus in

this final part. Between each of the trials and parts, a short pause was inserted to give

the subjects time to fill in the corresponding questionnaires.
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The stories were played through the stereo speakers of a laptop. At the start of

the experiment, the subjects could determine the volume themselves, such that they

were comfortable during the experiments. The auditory stimuli were presented as is

to the subjects without additional processing. The subjects were not familiar with the

stories. The professional narrators were all male, except for the story used in the first

trial of the second part. To keep the subjects motivated throughout the experiment, the

subjects were informed that a gift card was to be handed out to the three best-scoring

participants on the combined results of the questionnaires and arithmetic exercises.

4.1.2. Dataset II Dataset II is a subset of the dataset collected by Vanthornhout

et al. [8]. This subset consists of 7 normal-hearing subjects, who all participated in

two experiments. In the first experiment, subjects were instructed to attend a Dutch

continuous auditory stimulus (story ‘Milan’). In the second experiment, the subjects

were instructed to attend a silent, subtitled cartoon movie while ignoring an auditory

stimulus. For each subject, about 15 minutes of data are available for both conditions.

The EEG data consist of 64 channels. The interested reader can find a more detailed

description of this dataset in the work of Vanthornhout et al. [8].

4.1.3. Dataset III Dataset III corresponds to the sAAD dataset as described in the

work of Biesmans et al. [4], and as publicly available [21]. Herein, 16 normal-hearing

subjects were exposed to a competing speaker scenario with two speakers, and were

instructed to attend to one of the speakers while ignoring the other one. As auditory

stimuli, four Dutch children’s stories were used. In total, approximately 72 minutes of

recorded data per subject are available, using a 64-channel EEG cap. A more detailed

description of this dataset can be found in the work of Biesmans et al. [4].

In the present study, we do not further consider the segments corresponding to

the ‘Audio-Question’ condition of Dataset I (green segments in figure 2), to ensure a

consistent active listening condition between Dataset I and Dataset II. Furthermore,

the data of the text reading and arithmetic exercise solving distractor conditions are

considered as one distractor condition, and hence their data are concatenated to increase

the amount of data. We justify this approach since we want to binary discriminate

between the active listening condition and the passive listening condition, although the

amount of data for the text reading distractor condition is larger.

4.2. Data processing

4.2.1. Preprocessing Preprocessing is applied after the data collection to the EEG in

order to remove artefacts, and to the speech in order to extract the envelope before

computing the NET and SE features. The preprocessing framework is chosen the same

as described in the work of Vanthornhout et al. [8], yet, with an additional muscle

artefact removal step. The speech envelope is extracted from the audio data based on



EEG-based decoding of absolute auditory attention to natural speech xii

the procedure proposed by Biesmans et al. [4]. First, the raw audio data are filtered

using a gamma-tone filterbank consisting of 28 filters, with centre frequencies between

50Hz and 5 kHz, spaced according to 1 equivalent rectangular bandwidth [26, 27]. The

output signal of each filter is thereafter transformed with a power law, i.e., |yk(t)|0.6,
k = 1..28. The signals are then linearly combined with equal weight and downsampled

to 256Hz, with the built-in low-pass anti-aliasing filter in MATLAB 2021b, to extract

the envelope.

The EEG data are first also downsampled to 256Hz. Next, muscle and eye artefacts

are removed using a multichannel Wiener filter (MWF) approach as described by Somers

et al. [28, 29]. Since the MWF is a data-driven filter, the data for all conditions for the

same subject are filtered using the same MWF in order to avoid condition-dependent

preprocessing. This approach requires artefact annotation, for which heuristic detection

mechanisms are utilised [8, 30], further specified in Appendix A. The EEG data are

subsequently re-referenced to the Cz-channel. Both the EEG and envelope are either

bandpass filtered using a Chebyshev type 2 filter with cutoff frequencies tailored to the

delta band (0.5−4Hz) (for the NET calculation), or passed through unfiltered (for the

SE calculation), as the SE frequency selection will be performed directly on the PSD in

correspondence to (6). Finally, both signals are downsampled to 128Hz and periods of

longer silence (>0.25 s) are removed.

Additionally, for Dataset I, the EEG data are first linearly detrended to compensate

for the strong baseline drift. The first downsampling before artefact removal is dropped

for Dataset III, as the EEG data in this case are only available at 128 Hz and highpass

filtered above 0.5Hz [21].

4.2.2. Hyperparameters The following hyperparameters are adhered to:

• NET: The lag value L is chosen equal to L = 64, corresponding to a time window

of 500 ms, to capture the relevant neural response [8,12]. Similar to Vanthornhout

et al. [8], all EEG channels are included in the design of the decoder. For the

two 64-channel EEG datasets (Dataset II and Dataset III), the correlation matrix

in (4b) is of dimension LC × LC where LC = 4096, which is quite large. For

the sake of numerical stability and to avoid overfitting, we, therefore, apply L2-

regularisation R
(reg)
xx = αRxx + βILC×LC , wherein α, β are computed according to

the method presented by Ledoit andWolf [31], of which a MATLAB implementation

is available [32].

• SE: In correspondence to the work of Lesenfants et al. [9], the SE is calculated

in a network of frontal, parietal-occipital and occipital channels (Fp1, Fpz, Fp2,

AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, PO7, PO3, POz,

PO4, PO8, O1, Oz and O2 for the 64-channel EEG cap and Fp1, Fp2, F7, F8,

Fz, O1 and O2 for the 24-channel EEG cap) on a frequency range spanning the

alpha (8−13Hz) and beta (13−30Hz) bands, i.e., setting f1 = 8Hz and f2 = 30Hz

in (6). The average of the SE values over these channels is utilised as an active
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listening feature. The PSD estimate is calculated using the multitaper spectral

analysis using 7 Slepian tapers with a frequency spacing of 0.5Hz [33].

4.3. Experimental setup

4.3.1. Absolute auditory attention decoding To study how the NET and SE features

vary across the different active listening and distractor conditions, a 10-fold cross-

validation is conducted per subject on Dataset I and Dataset II, where the folds are

split chronologically. Regarding the NET, the decoder is trained solely on the active

listening data of the left-in folds in order to reconstruct the speech envelope when

attending to the speech stimulus, whereas regarding the SE, no training is required.

The left-out fold is partitioned into windows, quantifying the amount of time given to

decide whether the subject is in a state of active listening. To this end, window lengths

of 5 s, 10 s, 20 s, 30 s and 60 s are used.

Subsequently, the classification accuracy of the features to discriminate between

high versus low attention windows, defined as the ratio of the number of correctly

predicted windows and the total amount of windows, is analysed. To this end, an

equal amount of active and passive listening windows are present. A linear discriminant

analysis (LDA) classifier is used, although other classifiers could be used as well [34].

This LDA classifier is trained using a nested 10-fold cross-validation procedure, where

the folds are split chronologically. As for the NET, the covariance matrix estimate in

the LDA classifier is regularised by adding a weighted identity matrix to the estimate

according to the work of Ledoit and Wolf [31].

4.3.2. Combination of aAAD and sAAD Next, we aim to analyse whether aAAD can

be incorporated into an sAAD framework, by evaluating whether the sAAD accuracy

will increase when only making a decision when the subjects are identified to be most

actively listening. A 10-fold cross-validation is conducted on the sAAD task of Dataset

III, where the folds are split chronologically and the left-out folds are split into 60 s

windows. The accuracy of these sAAD decoders is evaluated on a proportion of the

left-out folds spanning the x%, x = 0, . . . , 100, of the segments signalled by the NET

and SE features as having the highest absolute auditory attention. Regarding the NET,

this selection of active listening segments is performed by applying the sAAD decoders

on the left-out folds, computing the maximum of the correlation between the decoder

output ŷ and both speech envelopes y1 and y2

(
max

(
ρ
(
ŷ,y

(val)
1

)
, ρ

(
ŷ,y

(val)
2

)))
over

60 s windows, and selecting the segments which have the x% highest values of this

feature. Regarding the SE, the x% lowest SE values on the left-out folds are selected in

correspondence to the results on Dataset I and Dataset II as will be detailed infra. We

hypothesise that the sAAD accuracy will subsequently increase as x decreases since no

truthful sAAD decision can be made on segments where the subjects are not actively

listening to any speech stimulus.
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4.4. Statistical testing

Hypothesis tests are performed using the two-sided Wilcoxon signed rank test [35]

and the resulting p-values are corrected for multiple comparisons using the Benjamini-

Hochberg correction [36]. To assess the statistical significance of slopes, a linear

regression model is fitted, and the t-test [37] on the coefficient corresponding to the

slope is performed under the null hypothesis that the corresponding coefficient is zero.

All hypothesis tests are performed with respect to a significance level α = 0.05.

The significance level for the classification accuracy is computed as the upper bound

of a 95% one-sided confidence interval of a binomial distribution with success rate 50%

(chance level performance).

5. Results

5.1. Absolute auditory attention decoding

Figure 3 shows the SE and NET correlations for each window of each subject (one data

point = one window within a particular fold of one subject) and the per-subject averages

across all windows in all folds on Dataset I and Dataset II for the 10 s and 30 s windows.

The two-sided Wilcoxon signed rank test on the per-subject averages indicates a

significant difference between the active listening and distractor conditions for the SE

features (p < 0.05). However, the SE attains lower values in the active listening than in

the distractor conditions, which is opposite from the hypothesis by Lesenfants et al. [9]

where a higher SE was hypothesised for actively listening than passively listening (while

not performing any distractor task).

Regarding the NET, significantly higher correlations are found for the active

listening than for the distractor conditions (p < 0.05). These results are consistent

with the work of Vanthornhout et al. [8], where higher NET correlations were found

for subjects actively listening than for subjects passively listening while watching a

silent movie. Nevertheless, while Vanthornhout et al. [8] used artificial, standardised

sentences, we used natural speech and introduced two new distractor tasks.

When applying an LDA classifier on these features, we obtain classification

accuracies as shown in figure 4. Both the NET and the SE features outperform chance

level, and are subsequently able to discriminate between the active and passive listening

condition, wherein the NET visually seems to suffer more from shorter window lengths

than the SE.

In Dataset I, the standard deviation across subjects of the SE classification accuracy

(0.14 (10 s), 0.11 (30 s)) is comparable to the NET classification accuracy

(0.09 (10 s), 0.11 (30 s)). In Dataset II, however, this standard deviation across subjects

of the SE classification accuracy (0.18 (10 s), 0.25 (30 s)) is larger than the standard

deviation of the NET classification accuracy (0.06 (10 s), 0.07 (30 s)).
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Figure 3. The neural envelope tracking (NET) correlations and spectral entropy (SE)

on Dataset I and Dataset II. Contrary to the hypothesis of Lesenfants et al. [9], the SE

is significantly lower when actively listening (‘Audio’) than when passively listening

during the movie watching (‘Movie’), arithmetic exercise solving (‘Mathematics’) and

text reading (‘Text’) distractor conditions. As hypothesised, the NET correlation

is significantly higher in the active listening than in the distractor conditions, This

experiment has been repeated for window lengths of 10 s and 30 s. Red and blue dots

represent the individual data points for each combination of subject, fold, and window.

The black dots represent the average feature value per subject after averaging across

folds and windows. Lines connect these per-subject averages and p-values are noted

on the right of the data.

5.2. Combination of aAAD and sAAD

Figure 5 shows the sAAD accuracy on Dataset III, when evaluated on the x%,

x = 0, . . . , 100, segments with the highest absolute auditory attention, i.e., the x%

segments with the highest NET correlation or the lowest SE, in correspondence with

the results on Dataset I and Dataset II.

Contrary to the hypothesis, evaluating sAAD accuracy on the lowest SE segments
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Figure 4. Classification accuracies across subjects, after averaging across folds, of

the absolute auditory attention decoding (aAAD) task on Dataset I and Dataset II

using the neural envelope tracking (NET) correlations and the spectral entropy (SE).

The mean accuracy across the subjects is marked in bold and the standard deviation

is shown as shading. Chance level is computed as the upper bound of a 95% one-

sided confidence interval of a binomial distribution with success rate 0.5, and shown

in shading, with the upper limit marked in bold. On both datasets, the methods yield

accuracies above chance level.

shows a significant decrease in accuracy when decreasing x (p < 0.01). This trend is

different than what is expected from the SE results on Dataset I and Dataset II, where

lower SE was associated with more actively listening. This result is, however, consistent

with the study of Lesenfants et al. [9], where a higher SE was hypothesised to correlate

with higher auditory attention.

Nevertheless, evaluating the sAAD accuracy on the highest NET correlation

segments, the sAAD accuracy increases as x decreases, illustrating the viability of this

approach. This trend is, furthermore, significant (p < 10−6). This is consistent with the

NET results on Dataset I and Dataset II, where a higher NET was observed in segments

where the subject is actively listening to the speech.

6. Discussion

Lesenfants et al. [9] hypothesised higher SE to be associated with active listening rather

than with passive listening (not performing any interfering task) conditions. We find

contrasting results: On the one hand, we find lower SE when actively listening versus

passively listening while silently reading a text, performing arithmetic exercises (Dataset

I), or watching a silent movie (Dataset II). On the other hand, we do find lower sAAD

accuracies (Dataset III) when evaluating sAAD accuracy only on the lowest SE segments,

which, by the findings in Dataset I and Dataset II, should correspond to segments of
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Figure 5. Average selective auditory attention decoding (sAAD) accuracies across

subjects after averaging across folds. The sAAD accuracies are calculated on the x%,

x = 0, . . . , 100, highest active listening segments of Dataset III, as signalled by the

highest neural envelope tracking (NET) correlation and lowest spectral entropy (SE)

segments conform the findings on Dataset I and Dataset II. Contrary to the results

on Dataset I and Dataset II, a negative trend is observed when only evaluating the

sAAD segments on a decreasing number of active listening segments as signalled by

the lowest SE. By selecting the highest NET correlation segments, the sAAD accuracy

increases with a decreasing proportion of the validation set used as hypothesised.

higher absolute auditory attention. Keeping only the lowest SE segment in Dataset III

thus possibly keeps (rather than removes) segments of lower absolute auditory attention.

In the sAAD setting where there is no dedicated distractor task, our results are actually

consistent with the observations in the work of Lesenfants et al. [9], which also did not

include a specific distractor condition.

Consequently, the relation of the SE between the active and passive listening

conditions is inconsistent, and seems to depend on the distractor task. Our hypothesis

is that the SE does not decode the absolute auditory attention, but rather reflects

the differences in overall cognitive resources spent on each task (either active listening

or a distractor condition). Indeed, in Dataset I and Dataset II, the passive listening

conditions are all coupled to specific distractor conditions (movie watching, arithmetic

exercise solving and text reading) that require mental resources. On the contrary, in

Dataset III and the work of Lesenfants et al. [9], there is no specific distractor condition,

such that within Dataset III and the work of Lesenfants et al. [9] a higher SE might be

related to more actively listening and lower SE, e.g., to mind-wandering. The relation

for SE between actively and passively listening, consequently, seems to depend on the

specific distractor task. The SE, furthermore, cannot discriminate between different

tasks giving rise to the same overall peakedness in the PSD. The practical relevance

of the SE as a generic feature for absolute auditory attention decoding is therefore

questionable. Nevertheless, the SE does prove useful in discriminating between two

distinct, predefined tasks (e.g., actively listening versus watching a movie) whenever
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both tasks require a different amount of cognitive resources. However, the relative

change of the SE between two conditions will depend on the nature of the task(s) in

both conditions, and is thus not necessarily (directly) related to the state of active

versus passive listening. This hypothesis is, furthermore, consistent with the predictive

power of the SE in dedicated tasks, such as for anaesthetic depth [14, 15], respiration

movements [15], sleep stages [15], and imagined finger movement [15], and consistent

with the discriminative power in dedicated tasks, such as between subjects in rest and

performing mental arithmetic [17], and between subjects in rest and fixated on flashing

patterns [16]. Additionally, these findings further support the increasing awareness

of the fact that general EEG features or models often do not generalise well across

datasets and conditions, and can be heavily tailored to specific experimental conditions.,

e.g., [2, 38–40]

The NET correlations, on the other hand, do not suffer from this phenomenon of

relative change between conditions since this technique directly measures the coupling

between the acoustic stimulus and the neural response to that stimulus. Due to this

explicit coupling, this trend is expected to be consistent across different experimental

settings. We indeed observe that the NET correlations are consistently higher in the

active listening condition compared to the passive listening conditions, for any of the

distractor tasks, in line with the findings of Vanthornhout et al. [8]. Furthermore,

the sAAD accuracy increases when evaluating sAAD on a reduced portion of the

validation set as signaled by the highest NET correlations, keeping only high auditory

attention segments. As a result, even though the NET-based classification does not

outperform the SE-based classification in figure 4, the consistency of the NET feature

across different settings makes it the better candidate for deployment in aAAD and

sAAD tasks. Furthermore, it is noted that this NET accuracy can likely be improved

by also including an encoder to the speech envelope next to the decoder on the EEG,

resulting in a canonical correlation analysis (CCA) approach [41,42].

These experiments, additionally, seem to provide a proof of concept for aAAD in

general, and for using it in combination with sAAD, e.g., in the context of neuro-steered

hearing devices. Future work could focus on validating these results on a dataset fully

tailored towards combining sAAD and aAAD, where the auditory attention of subjects

is manipulated with specific tasks during an sAAD experiment. To date, such a dataset

does not exist to the best of our knowledge. Additionally, although the experiment

of Dataset I was conducted in a non-radio frequency shielded classroom, both features

significantly discriminate between the active and passive listening conditions. This

indicates that this technology is viable in more realistic environments, outside controlled

radio frequency shielded laboratories.

In summary, the NET feature seems better suited for aAAD and sAAD due to the

consistent relation between actively and passively listening, independent of the type of

passive listening condition. While the SE seems to be able to discriminate between two

specific conditions, it does not seem useful as a general feature for aAAD due to the

inconsistent relation between actively and passively listening across different conditions.
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7. Conclusion

In this paper, we have discriminated between subjects actively listening and passively

listening, a task referred to as absolute auditory attention decoding (aAAD). Both

neural envelope tracking (NET) and spectral entropy (SE) features were used to perform

this aAAD task. To this end, we have introduced a new dataset containing an active

listening condition, as well as distractor conditions during which the subject silently

reads a text or solves arithmetic exercises while passively listening to a speech stimulus.

Next to this new dataset, we have also used an existing dataset where the distractor

condition consisted of watching a silent movie. Contrary to previous work, where SE

was hypothesised to be higher in subjects actively listening than in subjects remaining

passive (without any distractor), we have found that the alpha and beta band SE in

the frontal, parietal-occipital, and occipital channels increases from the active listening

condition to the passive listening condition with distractor tasks such as movie watching,

silently reading a text, and performing arithmetic exercises distractor conditions. On

the contrary, the NET was found to be consistently higher between the active listening

and any of the distractor (i.e., passive listening) conditions. Further, only evaluating

selective auditory attention decoding (sAAD) accuracy on segments of high NET shows

an increased sAAD accuracy, whereas evaluating on segments of low SE shows the

reverse trend, thus possibly removing auditory attentive segments. Thus, likely, the

SE rather relates to the cognitive load required for each task than the actual absolute

auditory attention, whereas the NET correlations directly relate to (in)attention to the

stimulus and are consistent across several datasets and tasks. The NET, thus, seems the

better option to estimate absolute auditory attention, and appears to be more suited

to use in conjunction with an sAAD task, e.g., in the context of neuro-steered hearing

devices.

Appendix A. Heuristic artefact detection

Segments are annotated as eye artefacts if the total power in the frontal channels (Fp1,

AF7, AF3, Fpz, Fp2, AF8, AF4 and Afz for the 64-channel EEG cap, and Fp1, Fp2

and Fpz for the 24-channel EEG cap) is higher than 5 times the baseline power in those

channels, according to the procedure of Vanthornhout et al. [8].

Regarding the muscle artefact detection, the EEG signal is first filtered using a zero-

phase Chesbyshev type 2 filter bandpass filter with cutoff frequencies between 20Hz and

60Hz. Segments are thereafter annotated as muscle artefacts if the total power of this

filtered EEG signal in the channels at the side of the head (AF7, F7, F5, FT7, FC5,

T7, C5, TP7, CP5, P7, P5, P9, PO7, AF8, F6, F8, FC6, FT8, C6, T8, CP6, TP8, P6,

P8, PO8 and P10 for the 64-channel EEG cap, and F7, T7, CP5, F8, T8, TP9 and

TP10 for the 24-channel EEG cap) is higher than 60 times the baseline power in those

channels [30].
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