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The concept of neuro-steered hearing prostheses
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A backward decoding framework for AAD:
stimulus reconstruction
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envelope extraction
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(e.g. = 0.26)
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(e.g. = 0.044)

max attended
speaker

AAD = auditory attention decoding
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A backward decoding framework for AAD:
stimulus reconstruction

Training
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• Lots of data to fit the decoder
(~minutes)
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• Small decision window (~seconds)
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Benchmarking of different AAD algorithms

Paper Code/Method
O’Sullivan et al., 2014 MMSE-avgdec-ridge
Biesmans et al., 2017 MMSE-avgcov-ridge
Alickovic et al., 2019 MMSE-avgdec-lasso
Alickovic et al., 2019 MMSE-avgcov-lasso
Miran et al., 2018 MMSE-adap-lasso

de Cheveigné et al., 2018 CCA
de Taillez et al., 2017 NN-SR

Deckers et al., 2018 (P30) CNN-D
Ciccarelli et al., 2018 CNN-C

The implementations of the algorithms have been validated by the authors of
the corresponding papers
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Benchmarking of different AAD algorithms

AAD algorithms

Nonlinear
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Benchmarking of different AAD algorithms

AAD algorithms

Nonlinear

Direct classification

CNN-D CNN-C

Stimulus reconstruction

NN-SR

Linear
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Benchmarking of different AAD algorithms

AAD algorithms

Nonlinear Linear

Training-free

MMSE-adap-lasso

Supervised

CCA

MMSE-avgcov-ridge/lasso

MMSE-avgdec-ridge/lasso
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Benchmarking of different AAD algorithms

AAD algorithms

Nonlinear Linear

Training-free

MMSE-adap-lasso
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Forward and backward
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Benchmarking of different AAD algorithms
AAD algorithms

Nonlinear Linear

Training-free

MMSE-adap-lasso

Supervised

Forward and backward
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Averaging decoders
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Averaging autocorrelation matrices

MMSE-avgcov-ridge MMSE-avgcov-lasso
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Benchmarking of different AAD algorithms
AAD algorithms

Nonlinear Linear

Training-free

MMSE-adap-lasso

Supervised

Forward and backward
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Averaging autocorrelation matrices
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Take-home messages

I
Deep learning methods can achieve very high performances, but suffer from
computational complexity and high variability

II
Within linear methods, a combination of backward and forward modeling
works best (CCA)

III
Average covariance matrices, rather than decoders
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The setup: data, testing procedure

Two independent datasets are used:

AADKUL-2015 Fuglsang-2018

All performances and hyperparameters are cross-validated
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The setup: data, testing procedure
Two independent datasets are used:

AADKUL-2015 Fuglsang-2018

Clean speech envelopes are used, but covered in . . .
• (Van Eyndhoven et al., 2016), (Han et al., 2019), (Aroudi et al., 2019), . . .
• Poster Multi-microphone speaker separation for neuro-steered hearing aids:

neural networks versus linear methods of Neetha Das (P24)
1STADIUS, Dept. Electrical Engineering (ESAT)

2ExpORL, Dept. Neurosciences

Multi-microphone speaker separation for neuro-steered 

hearing aids: neural networks versus linear methods
Neetha Das1,2, Jeroen Zegers1, Hugo Van Hamme1, Tom Francart2, Alexander Bertrand1

• A neuro-steered noise suppression pipeline for smart hearing devices

• Speaker separation: classical signal processing or deep learning?

• Performance under different acoustic conditions [1]:

• no background babble, -1.1dB and -4.1dB SNR (babble)

• Speaker separations: 10º, 60º and 180º

AIM:

METHODS:

1) Multiplicative non-negative ICA (MNICA) [2] + Multichannel Wiener 

Filter (MWF) (training free) 

or

2) Deep neural network (DNN) using deep clustering [3] 

(trained on independent CGN dataset)

Attention decoding accuracies

Auditory Attention Decoding (AAD)

Linear spatio-temporal decoders [4], 30s trials

Envelopes from: (1) MNICA-only, (2) MNICA+MWF, 

(3) DNN-only, (4)DNN+MWF

RESULTS:

Source separation and noise reduction

Signal to Interference plus Noise Ratio (SINR) 

Improvement 

Single-channel Vs Multi-channel DNN

• Both MNICA and deep learning (DNN) approaches: good performance in easy acoustic conditions

• DNN and DNN+MWF : more robust performances in more challenging conditions

• MWFs beneficial to further separate and denoise speech streams for better AAD (in both MNICA and DNN)

• DNN+MWF : Better improvement of SINR than MNICA+MWF

• MNICA+MWF : good SINRs, lower computational complexity

References
[1] Das N, Bertrand A, Francart T. EEG-based auditory attention detection: boundary conditions for background noise and speaker positions. Journal of neural engineering. 2018 Oct 9;15(6):066017.

[2] Das N, Van Eyndhoven S, Francart T, Bertrand A. EEG-based attention-driven speech enhancement for noisy speech mixtures using N-fold multi-channel Wiener filters. In EUSIPCO 2017 Aug (pp. 1660-1664).

[3] Wang ZQ, Le Roux J, Hershey JR. Multi-channel deep clustering: Discriminative spectral and spatial embeddings for speaker-independent speech separation. In IEEE ICASSP 2018 Apr 15 (pp. 1-5). 

[4] O'sullivan JA, et al. Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex. 2014 Jan 15;25(7):1697-706.

SDR
CGN 

dataset

AAD 

dataset

Single-

channel
8.6 dB 2.1 dB

Multi-

channel
11.2 dB 11.4 dB

• Signal-to-Distortion Ratio (SDR) at the output of DNN : Single-

channel DNN does not generalize to other data sets 

• Multi-channel DNN outperforms single-channel DNN on AAD 

accuracy and SDR

Under noise-free conditions: 
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The p(τ)-performance curves: a visual analysis
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The p(τ)-performance curves: a visual analysis
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A new performance metric: the MESD
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Which point is most practical for an attention-tracking gain control system?
• Fast but inaccurate?
• Slow but accurate?
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A new performance metric: the MESD
Which point is most practical for an attention-tracking gain control system?
• Fast but inaccurate?
• Slow but accurate?

Optimizing the attention-tracking gain control system leads to the minimal
expected switch duration (MESD) performance metric
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A new performance metric: the MESD
Which point is most practical for an attention-tracking gain control system?
• Fast but inaccurate?
• Slow but accurate?

Optimizing the attention-tracking gain control system leads to the minimal
expected switch duration (MESD) performance metric

Find out more at poster P32!
An Interpretable Performance Metric for
Evaluating Neural Decoders in the Context
of Auditory Attention-Based Gain Control
Simon Geirnaert(1,2), Tom Francart(2), Alexander Bertrand(1)

(1) KU Leuven, ESAT-STADIUS; (2) KU Leuven, ExpORL

Evaluating Auditory Attention Decoding
Auditory Attention Decoding

Current hearing aids
7 lack information on the targeted speaker in a ‘cocktail party’ scenario

Solution
Auditory attention decoding (AAD) algorithms infer the auditory

attention of the user from the electroencephalogram signal
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Performance Evaluation

AAD accuracy depends on decision window length (p(τ )-performance curve)
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Issues:
• difficult statistical comparison
• contradicting conclusions depending
on decision window length
• arbitrary choice of reported decision
window length/accuracy

What decision window length is relevant?
Goal

Develop a new single-number performance metric for AAD algorithms that
is interpretable in the context of AAD-based adaptive gain control and

resolves trade-off AAD accuracy and decision window length

AAD-Based Adaptive Gain Control
Design Adaptive Gain Control System

An attention-tracking gain control system has two crucial design issues:
1 How many gain levels should we use?
2 How often should we take a step?

max. gain S1

max. gain S2

max. gain S1

max. gain S2 20 levels
τ = 2 s
p = 74%

6 levels
τ = 2 s
p = 74%

Attention switch

0 60 120 180

max. gain S1

max. gain S2

max. gain S1

max. gain S2 10 levels
τ = 2 s
p = 74%

10 levels
τ = 0.5 s
p = 62%

time [s]

Markov Chain Model

Adaptive gain control system can be directly translated into Markov chain:

1 2 3 . . . i . . . N − 1 N

p

q

p

q

p

q

q p

x = 0 x = i−1
N−1

x = 1

Attended
speaker max.

Interference
max. Target direction

Adaptive gain control system Markov chain
gains states x ∈ [0, 1]

number of (relative) gain levels number of states N
AAD accuracy transition probability p

decision window length step time τ
Two crucial design issues = optimization Markov chain parameters:
1 Number of states N
2 Optimal working point (τopt, popt) on p(τ )-performance curve

Optimization Markov Chain Parameters Definition MESD Metric
Optimizing Number of States N

Two design constraints:
• Minimal number of states Nmin = 5
• Lower bound P0-confidence interval x̄ larger than comfort level c

1 2 . . . N − 4 N − 3 N − 2 N − 1 N

c

c

π(1) π(2)
π(N − 4) π(N − 3)

π(N − 2)
π(N − 1)
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p

q

p

q

p

q

p

q

p

q

q p

x = 0 x = 1k̄
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speaker max.
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speaker max. Target direction

Finding Optimal Working Point (τopt, popt)

Minimize the expected switch duration (ESD) over the p(τ )-performance
curve, with the ESD the expected time needed for a stable gain switch after
an attention switch of the user
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k

The minimal expected switch duration (MESD) is the expected time required
to reach a predefined stable working region defined via the comfort level c ,
after an attention switch of the hearing aid user, in an optimized Markov
chain as a model for an adaptive gain control system. Formally, it is the
expected time to reach the comfort level c in the fastest Markov chain with
at least Nmin states for which x̄ ≥ c , i.e., the lower bound x̄ of the P0-
confidence interval is above c :

MESD = min
N ,τ

ESD(p(τ ), τ ,N)
s.t. x̄ ∈ [c , 1]

N ≥ Nmin

Illustration: MESD-Based Performance Evaluation
The MESD, with c = 0.65 and P0 = 80%, applied to the p(τ )-performance
curves of two variants of the MMSE-based linear AAD decoder (16 subjects)

Subject-averaged comparison:

1 10 20 30 40 50 60

0.5

0.75

1 Averaging autocorrelation
matrices (MESD = 22.8 s)

Averaging decoders
(MESD = 58.8 s)

Optimal working point

Decision window length τ [s]

Accuracy p

Statistical comparison:
Paired (per subject), one-sided
non-parametric Wilcoxon
signed-rank test:

averaging of decoders
<

averaging autocorrelation
matrices

Conclusion: the relevant working region is at small decision window lengths,
despite low AAD accuracy
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Comparing the per-subject MESDs

0 151

19.8 s

MMSE-avgcov-ridge

32.2 s

MMSE-avgdec-ridge→ excl. 1 outlier

35.7 s

MMSE-avgdec-lasso→ excl. 1 outlier

21.5 s

MMSE-avgcov-lasso

17.2 s

CCA

4.34 s

CNN-D→ excl. 2 outliers

Minimal expected switch duration [s]

(AADKUL-2015)

Disclaimer: these are preliminary results (some algorithms still missing)
8



Comparing the per-subject MESDs

0 151

23.4 s

MMSE-avgcov-ridge

Fuglsang-2018
AADKUL-2015

MMSE-avgdec-ridge→ 1 outlier

33.3 s

MMSE-avgcov-lasso
21.5 s

MMSE-avgdec-lasso→ 1 outlier

33.0 s
CCA

16.9 s

Minimal expected switch duration [s]

Disclaimer: these are preliminary results (some algorithms still missing)
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Statistical analysis on MESD: linear mixed-effects model
AAD algorithms

Nonlinear

CNN-D

Linear

CCA Backward

Averaging autocorrelation matrices

MMSE-avgcov-ridge
MMSE-avgcov-lasso

Averaging decoders

MMSE-avgdec-ridge
MMSE-avgdec-lasso

Only on AADKUL-2015 for the moment (two outlying subjects removed)
Disclaimer: these are preliminary results (some algorithms still missing) 9
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AAD algorithms
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Statistical analysis on MESD: linear mixed-effects model
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Statistical analysis on MESD: linear mixed-effects model
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Statistical analysis on MESD: linear mixed-effects model
AAD algorithms
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Take-home messages

I
Deep learning methods can achieve very high performances, but suffer from
computational complexity and high variability

II
Within linear methods, a combination of backward and forward modeling
works best (CCA)

III
Average covariance matrices, rather than decoders
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STADIUS
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KU  LEUVEN

Attention is vitality. It connects you with others.
It makes you eager.

Stay eager.
– Susan Sontag

Interested in more? Questions?
simon.geirnaert@esat.kuleuven.be
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The setup: data, testing procedure

Two independent datasets are used:

AADKUL-2015
• 16 subjects
• 72min of data per subject
• 64-channel Biosemi EEG system
• Dry and HRTF-filtered stimuli
(−90◦, +90◦)

Fuglsang-2018
• 18 subjects
• 50min of data per subject
• 64-channel Biosemi EEG system
• HRTF-filtered stimuli (−60◦, +60◦)
• 6= acoustic room conditions
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Comparing the per-subject MESDs: correlations
MESD [s] MMSE-avgcov-ridge

MMSE-avgdec-ridge

MMSE-avgcov-lasso

CCA

CNN-D

Disclaimer: these are preliminary results (some algorithms still missing) 12


