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Abstract  

Objectives: Auditory attention decoding (AAD) refers to the process of identifying which sound source 

a listener is attending to, based on neural recordings, such as electroencephalography (EEG). Most AAD 

studies use a competing speaker paradigm where two continuously active speech signals are 

simultaneously presented, in which the participant is instructed to attend to one speaker and ignore 

the other speaker. However, such a competing two-speaker scenario is uncommon in real life, as 

speakers typically take turns rather than speaking simultaneously. In this paper, we argue that decoding 

attention to conversations (rather than individual speakers) is a more relevant paradigm for testing AAD 

algorithms. In such a conversation-tracking paradigm, the AAD algorithm focusses on switching 

between entire conversations, resulting in less frequent attention shifts (ignoring turn-taking within 

conversations), thereby allowing for more relaxed constraints on the decision time. Design: To test AAD 

performance in such a conversation-tracking paradigm, we simulated a challenging restaurant scenario 

with three simultaneous two-speaker conversations, which were podcasts presented in front of the 

listener and in the back left and back right of the room. We conducted an EEG experiment on 20 

normal-hearing participants to compare the performance of AAD in the commonly used competing 

speaker paradigm with two speakers versus the conversation tracking paradigm with 2 or 3 

conversations, each containing two turn-taking speakers. Results: We found that AAD, using stimulus 

decoding, worked well under all experimental conditions, and that the accuracy was not influenced by 

the direction of attention, the proximity to the target conversation, or the presence of within-trial 

attention switches (versus a condition with sustained attention). Given the challenging scenario, we 

probed for the participants’ listening experience and found a correlation between the neural decoding 

performance and the perceived listening effort and self-reported speech intelligibility. To gain insight 

into the speech intelligibility of the participants in our setup, they performed a speech-in-noise test 

(Flemish matrix sentence test), but we did not find a correlation between the speech intelligibility 

performance and the AAD performance.  
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1. Introduction  

Auditory Attention Decoding (AAD) is a technique used to determine which sound source a listener is 

paying attention to by analysing neural signals, which are typically measured using brain imaging 

techniques such as electroencephalography (EEG) or magnetoencephalography (MEG) (Biesmans et 

al., 2017; Ding & Simon, 2012; Mesgarani & Chang, 2012; J. A. O’Sullivan et al., 2015). When we pay 

attention to a specific auditory signal, such as a person speaking in a noisy environment, the neural 

activity phase-locks with certain features of that sound, such as its fundamental frequency (F0) or to 

the slowly fluctuating speech envelopes (Coffey et al., 2019; Howard & Poeppel, 2010; Luo & Poeppel, 

2009; Pasley et al., 2012; Peelle et al., 2013). This synchronization between brain activity and sound is 

higher for an attended (speaker) than for an unattended speaker, which is used by AAD systems to 

decode selective attention (Biesmans et al., 2017; J. A. O’Sullivan et al., 2015). Many algorithms have 

been developed for AAD and are being developed and evaluated further (Biesmans et al., 2017; Das et 

al., 2016, 2017; Geirnaert et al., 2019, 2020, 2021, 2022; Han et al., 2019; Heintz et al., 2025; J. A. 

O’Sullivan et al., 2015; Rotaru et al., 2024; Shi et al., 2025; Tanveer et al., 2024; Van Eyndhoven et al., 

2017; Wang et al., 2021; Wong et al., 2018; X. Xu et al., 2024; Z. Xu, Bai, Zhao, Hu, et al., 2022; Z. Xu, 

Bai, Zhao, Zheng, et al., 2022). Furthermore, this technology has potential applications in neuro-steered 

hearing aids, e.g., enabling devices to amplify only the attended sound (Das et al., 2020; Van Eyndhoven 

et al., 2017), as well as other applications in domains such as art, health, education, games, 

neuromarketing, etc. (Belo et al., 2021).  

To apply AAD in practical applications, such as neuro-steered hearing aids (Van Eyndhoven et al., 2017), 

the AAD decoder must be able to work well in complex, realistic listening scenarios. Most AAD studies 

use a paradigm with two continuously active competing speakers, in which the participant has to attend 

to one speaker and ignore the other speaker (Biesmans et al., 2017; Das et al., 2016, 2017, 2018; de 

Cheveigné et al., 2018; Holtze et al., 2021; J. A. O’Sullivan et al., 2015; Wang et al., 2021). However, this 

setting with sustained attention to one of two competing speakers is not very realistic or common in 

everyday life, since speakers usually engage in conversations, in which they take turns. The listener 

would then frequently and rapidly switch attention between these turn-taking speakers, which is hard 

to track with state-of-the-art AAD algorithms.  

Therefore, we question the traditional paradigm with two competing speakers as a validation setting 

for AAD. To make AAD practical for everyday applications, it is essential to evaluate its performance in 

more challenging and realistic environments with multiple conversations involving turn-taking 

speakers. We argue that - in practice - it is sufficient to track attention to a conversation rather than to 

individual speakers, such that tracking rapid and frequent attention switches within a conversation is 

not necessary. By treating the speech of both speakers within a conversation as a single entity, the 

algorithm focuses on switching attention between entire conversations rather than individual speakers 

within the conversation. This reduces the frequency of attention shifts and allows for more relaxed 

constraints on the AAD decision window length, i.e., the amount of EEG data needed for the AAD 

algorithm to make a sufficiently accurate decision on the current attention state.  

Up to our knowledge, the only study involving a conversation-tracking paradigm for AAD is the one in 

Choudhari et al. (2024), where AAD was performed using intracranial (invasive) EEG (iEEG) recordings. 

They recorded iEEG in three neurosurgical patients, while they were asked to focus on one of two 

concurrent conversations with multiple talkers taking turns and continuously moving in space. Their 

system combined brain decoding with a binaural speech separation model that separated the speech 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2025. ; https://doi.org/10.1101/2025.06.20.660726doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.20.660726
http://creativecommons.org/licenses/by/4.0/


of moving talkers while retaining their spatial locations. In addition, 24 (self-reported) normal-hearing 

participants participated in an online experiment in which they had to subjectively rate the proposed 

system. Those 24 subjects only participated in the audio perception experiment and did not participate 

in the EEG experiment. There was one condition with the system off, one condition with the system on 

where the separated speech was used for enhancement, and one condition with the system on where 

the original clean speech was used for enhancement. They found that their proposed system improved 

auditory perception, which included improved accuracy in detecting repeated words in the attended 

conversation, a decrease in the detection of repeated words in the unattended conversation, and a 

comparable localization across conditions. They also found that the proposed system improved 

auditory attention decoding and speech intelligibility, as well as reduced listening effort (Choudhari et 

al., 2024). Although the results were positive, some critical nuances should be considered. The AAD 

results are based on data from only 3 patients, which may not be representative for a larger population. 

Furthermore, the data is recorded with iEEG on neurosurgical patients. Generalisability to other more 

diverse groups, or to non-invasive neurorecording modalities such as EEG, can be limited. Furthermore, 

the experimental setup does not contain any intra-trial attention switches between the two 

conversations and may not completely reflect the complexity of everyday situations.  

This paper advocates for a paradigm shift for evaluating AAD algorithms, from tracking individual 

speakers to decoding attention to conversations. In a conversation-tracking paradigm, the AAD 

algorithm focusses on switching between entire conversations rather than individual speakers. This 

approach naturally reduces the frequency of attention shifts (ignoring turn-taking within conversations) 

and allows for more relaxed constraints on the decision time, which is a more meaningful framework 

for evaluating AAD algorithms.  

To validate this proposed paradigm, we performed an EEG experiment with a conversation-tracking 

paradigm in a realistic listening scenario. We designed four conditions (see Table 2) to answer the 

following questions. Is AAD as effective at decoding conversations as it is with single speakers? Is AAD 

capable of accurately decoding auditory attention in complex environments with three concurrent 

conversations?  

 

2. Methods 

2.1 Participants 

This study includes 20 normal-hearing (≤ 25dB HL), young subjects (18 years and 10 months - 29 years 

and 4 months, with a median age of 20 years and 5 months). Eighteen subjects were female and two 

were male. All participants signed an informed consent at the time of arrival. The study was approved 

by the UZ Leuven/Research Medical Ethics Committee (KU Leuven) with reference S57102. At the 

beginning of the study, participants completed a questionnaire to verify inclusion and exclusion criteria, 

including age and medical history. Otoscopy was performed to check for visible abnormalities in the 

ear canal and the tympanic membrane. Hearing thresholds were assessed using pure tone audiometry, 

with a threshold of ≤ 25dB HL at all octave frequencies from 125 Hz to 8000 Hz. All participants were 

native Dutch (Flemish) speakers. Individuals with neurological disorders affecting cognition or 

attention, such as autism spectrum disorder (ASS), attention deficit (hyperactivity) disorder (AD(H)D), 

dyslexia, dyscalculia, or epilepsy, were excluded from the study.  
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2.2 Speech-in-noise test 

To investigate a possible link between speech intelligibility and AAD performance, and to gain insight 

into the speech intelligibility of the participants in our setup, they performed a speech-in-noise test, 

the Flemish matrix sentence test (Luts et al., 2014). The sentences had a fixed grammatical structure, 

with a subject, verb, number, colour, and lastly an object. The participants had the choice between a 

fixed set of 10 words per category that were displayed on the screen in front of them. After hearing the 

sentence, participants had to click on the words they perceived or click ‘pass’ if they could not perceive 

any of the words.  

The test was done in free field instead of headphones, to mimic our protocol setup in which the stimuli 

were also presented in free field (see subsection 2.3). We used the adaptive procedure, in which the 

sound level of the speech was constant (60 dBSPL) and the noise (standardized stationary speech-

weighted) level was varied, based on the method of Wagener et al. (Wagener, Brand, et al., 1999a, 

1999b; Wagener, Kühnel, et al., 1999) also known as the Oldenburg method, to get the speech-

reception threshold (SRT). The SRT is the SNR at which 50% speech intelligibility is obtained. Speech 

and noise were spatially separated. The speech was presented from a loudspeaker in front of the 

participant, and the noise was presented from a loudspeaker above them. Presenting the noise from 

above the participant accounted for head-shadow effects and ensured consistent masking across 

frequencies. The matrix sentence test was standardised to administer the test with headphones or in 

free field without spatial separation. Therefore, we could not directly compare the results with the 

standardised norms, but our results can provide insights into speech intelligibility for our setup. 

2.3 Apparatus 

The participants were seated in a comfortable chair in front of 3 screens in a soundproof booth (see 

Figure 1). 

 

Figure 1: Visual representation of the setup. It also shows the positioning of the screens and loudspeakers 

(distance and angles) in the experimental setup in relation to the participant. 
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One screen was placed at the back left, one at the back right, and one right in the middle, in front of 

the participant. Next to each screen there were 2 loudspeakers. See Figure 1 for the exact position of 

the loudspeakers. Stimuli were presented using a Behringer (U-PHORIA UMC1820 audio-interface) 

sound card. 

Participants were instructed to attend one of the speakers or conversations and ignore the other 

speakers. The attention cue was shown with a coloured rectangle around the videos (green = attended, 

red = unattended). Throughout the conditions, brain activity was recorded with 64-channel Biosemi 

ActiveTwo EEG. Participants were instructed to move as little as possible to avoid muscle artefacts in 

the EEG signals. Communication with the participants could be maintained via a microphone in the 

booth.  

2.4 Stimuli 

Stimuli were presented at 60dB A from the frontal loudspeakers and at 54.5 dB A from the speakers in 

the back. The intensity was calculated based on the distance from the participant to the loudspeaker 

to imitate the natural attenuation with distance. The sound level was calibrated at the position of the 

listener.  

The stimuli of the condition with two competing speakers were randomly selected podcasts from the 

collection of ‘University of Flanders’ (Universiteit van Vlaanderen). The stimuli with conversations were 

randomly selected podcasts (with video) about various topics, each containing two turn-taking Flemish 

speakers without a strong dialect. When selecting the podcasts, we made sure that both speakers were 

always visible during the 10-minute video fragment. The videos were pre-processed with the program 

VSDC, to make sure they all had the same sampling frequency (44100 Hz), the intros were cut, and the 

videos were shortened to 10 minutes. We manually separated the voices of the podcast speakers into 

individual mono files using Audacity, allowing us to play each speaker through a different loudspeaker 

to mimic natural spatial separation between speakers in a conversation. The stimuli were further 

processed in Python1.  

2.5 Conditions 

The experiment contained 4 conditions and 10 minutes of data per trial. The different trials within each 

condition indicated which speaker or conversation was being attended to (i.e. the locus of attention). 

In the 2 Competing Speakers condition, there were two simultaneous competing speakers and in the 

2 Conversations condition, there were two simultaneous conversations (four speakers turn taking in 

pairs) presented. The other two conditions involved three conversations. In the Sustained Attention 

condition, the participant attended to one of the three conversations throughout the condition. Lastly, 

in the Attention Switch condition, participants attended to one of the three conversations, and after 5 

minutes they switched their attention to one of the other conversations. A visual representation of the 

 
1 The stimuli were each normalised to -27 dB RMS (by excluding the silences parts). Then, we determined the time points 

where the 2 voices from a podcast overlapped, to later apply a -3dB correction. This was done because the audio of each 

podcast was split into two channels corresponding to the two voices, left and right). When those voices overlapped, both 

voices were kept on both the left and right channel. Hence, when both channels were played together, the loudness was 

higher because the overlapped voices were played simultaneously from both channels. To avoid this amplification effect, a -

3dB correction for the voice overlapping sections was needed. 
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different conditions is shown in Figure 2, with green indicating the attended speaker(s) and red the 

ignored/unattended speaker(s).  

The order of the conditions and stimuli was randomised differently for each participant. The 3 trials of 

sustained attention and attention switch conditions always stayed together in one block, but the 

individual trials were randomized in order. See the overview of the experimental conditions in Table 1 

and a visual representation in Figure 2. In total, the test sessions took between 3 and 3.5 hours, which 

yielded 80 minutes (8 trials of 10 minutes) of EEG data consisting of the 4 experimental conditions. 

Breaks were obligatory after 3 consecutive trials. More breaks were taken if the participant indicated 

that they felt tired or needed a break.  

Table 1: Overview of the conditions 

Condition Content Number 

of trials 

Attended speaker(s) 

2 Competing Speakers 

(Reference)  

Classic 2 speakers AAD  1 Left or Right speaker 

2 Conversations  2 conversations instead of 2 

speakers 

1 Left or Right conversation 

Sustained Attention 

(3 conversations) 

 

3 conversations – attention only 

to one of the three conversations 

3 Conversation at the Front 

Conversation on the Left 

Conversation on the Right 

Attention Switch  

(3 conversations) 

 

3 conversations – switch attention 

from one conversation to another 

conversation 

3 Switch between Front & Left 

conversation 

Switch between Front & Right 

conversation 

Switch between Left & Right 

conversation 

 

 

Figure 2: Visual representation of the different condition types. The green rectangle indicates the attended 

speakers/conversations, and the red rectangle represents the unattended speakers. 
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2.6 Behavioural measures 

After each trial, there were 2 multiple choice questions about the content of the story, to keep the 

participants’ attention and motivation high, followed by a few questions to assess the subjective 

experiences of the participant during the respective trial. Those questions evaluated speech 

intelligibility, listening effort, fatigue, difficulty, and effort in switching attention (see Table 2). These 

questions were displayed on the front screen, after which the participants answered verbally with a 

score out of 100 (%). In addition, there was a general question about their experience. 

Table 2: Behavioural questions assessing listening experience 

Factor Question 

Speech intelligibility How well could you understand the ‘green’ conversation?  

Listening Effort (demands) How much effort did it take to understand the 'green' conversation?  

Listening effort (motivation) How many times did you give up listening to the 'green' conversation, e.g. 

when you were distracted? 

Fatigue How tired do you feel after listening?  

Difficulty How difficult was this condition?  

Required effort with 

attention switches 

How much effort did it cost to switch your attention between the different 

speakers/conversations? 

General Do you have remarks/observations about this condition that you want to 

share? Do you need a break? 

2.7 Signal processing 

The EEG data was processed in MATLAB (R2023a) using the AAD algorithm proposed by Biesmans et 

al. (2017). To compare the performance between the four different conditions (eight trials), we report 

the accuracy of the AAD algorithm predicting the attended speaker.  

In this study, we assume that the clean speech signals are available, and that we know which speech 

signals belong to the same conversation.  

Speech stimuli 

The speech envelope was extracted from the original speech signal using the method described by 

Biesmans et al. (2017). This involved a gammatone filter bank to decompose the speech signals into 

sub-bands, followed by a power law compression applied to each sub-band. These sub-band envelopes 

are then summed to form a single envelope for auditory attention decoding (Biesmans et al., 2017). In 

the final step, the speech envelope was downsampled to 128 Hz. 

EEG processing  

The EEG data were recorded at a sampling rate of 8192 Hz and processed per condition. Several 

preprocessing steps were applied to the EEG data:  

1) Data were initially downsampled from 8192 Hz to 256 Hz using the MATLAB resample function 

with an anti-aliasing filter to reduce pre-processing time.  

2) Eye-blink artefacts were estimated and removed using a Multichannel Wiener filter (MWF), 

based on the method outlined by Somers et al. (2018).  

3) A bandpass Chebyshev filter was applied to retain frequencies between 1 and 9 Hz. 
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4) Following the bandpass filtering, all channels were re-referenced to the common average 

reference. 

5) Finally, the data were downsampled again, to 128 Hz for further processing and to match the 

sampling rate of the speech envelope.  

AAD decoder 

Similar to e.g. Han et al. (2019), J. O’Sullivan et al. (2017), Van Eyndhoven et al. (2017) we assume that 

AAD algorithms have access to clean, separated conversations. Thus, we make abstraction of the 

automated speech separation that would typically precede AAD.  

For AAD, we used a backward least-squares linear decoder to reconstruct the speech envelope from 

the multichannel EEG (Biesmans et al., 2017). The reconstructed envelope is correlated with the 

original stimulus envelopes (Biesmans et al., 2017) and the one with the highest correlation is 

considered the attended one. A decision window length of 30 seconds was chosen, which refers to the 

duration of the window used to correlate the reconstructed envelope with the original stimulus 

envelopes.  

There was a total amount of 80 minutes of data (8 trials of 10 minutes). A subject-specific decoder was 

trained using a leave-one-trial-out (LOTO) Cross-Validation (CV) method. For each iteration, the model 

was trained on data from 7 trials (70 minutes in total) and tested on the remaining trial (10 minutes). 

This process was repeated 8 times, so that each trial served once as the test set. The attended speaker 

was predicted for each segment, and prediction accuracies were then averaged per condition and per 

participant, which resulted in a single prediction accuracy (%) per condition per participant. 

2.8 Statistical analysis 

The statistical assumptions (normality, homogeneity) for the use of a parametric test were not met, so 

we chose non-parametric statistical tests. Statistical analysis was performed using R software (version 

3.6.3). The significance level was set at α=0.05. The statistical methods chosen to investigate the effects 

on AAD decoding performance were the Wilcoxon Rank-sum test for a comparison between 2 groups 

and the Kruskal-Wallis test for more than 2 groups (Field et al., 2012).  

To compare between all the conditions, given the differences in chance levels (50% for two 

speakers/conversations and 33.33% for three conversations), we also calculated an adjusted accuracy 

metric (similar to balanced or normalised accuracy; see (Brodersen et al., 2010)), and defined here as: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐶ℎ𝑎𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙)

(1 − 𝐶ℎ𝑎𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙)
 

We note that all reported accuracies are the unadjusted ones, unless stated otherwise. 

 

Results  

In the conversation study, we wanted to track attention to conversations instead of to individual 

speakers. Figure 3 shows the average AAD accuracy per condition for the 20 subjects.  
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Figure 3: AAD results aggregated across all trials of each condition. Each dot represents a subject. The 

conditions with 2 competing speakers and 2 conversations are shown in yellow. The conditions with 3 

speakers/conversations are shown in green (Sustained Attention and Attention Switch).  

General 

In general, all conditions perform significantly better than chance (see Figure 3). For the conditions with 

2 competing speakers and 2 conversations (with 2 speakers), this was significantly (< .0001) above 50% 

and for the Sustained attention and Attention switch with 3 speakers this was significantly (< .0001) 

above 33.33%. We calculated the significance per condition, taking into account their respective chance 

levels, on group level with the Wilcoxon Signed rank test (single sided).  

2 conversations 

The Wilcoxon Rank Sum (two sided) test demonstrated that there was no significant difference 

(p=0.296, 95% CI [-0.100 ; 0.050]) between decoding the auditory attention with two competing 

speakers and decoding two conversations.  

Switches 

Wilcoxon's rank sum test (two-sided) showed that there was no significant difference (p= 0.393, 95% 

CI [-0.050 ; 0.100] between decoding 3 conversations without and with intra-trial attention switches.  
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Locus of attention  

The Kruskal-Wallis rank sum test showed that there was no significant difference between the 3 trials 

within the Sustained Attention condition (p = 0.439, eff_size = -0.006, 95% CI [-0.03 ; 0.19]) and the 

Attention Switch condition (p = 0.511, eff_size = -0.012, 95% CI [-0.03 ; 0.16]), meaning that there was 

no significant difference in performance between decoding the attention from the frontal, right, or left 

speakers.  

2 conversations versus 3 conversations 

The mean adjusted accuracy (over subjects) per condition was 0.52 (SD 0.19) for the 2 Competing 

Speakers condition, 0.59 (SD 0.26) for the 2 Conversations condition, 0.44 (SD 0.22) for the Sustained 

Attention condition and 0.47 (SD 0.24) for the Attention Switch condition. The adjusted accuracies are 

presented in Figure 4. The interpretation of adjusted accuracies states that values between 0 (chance 

level) and 1 (perfect accuracy) represent proportional performance above chance. The adjusted values 

are surprisingly close across all conditions. This indicates that while raw performance drops in the 3 

conversations conditions, relative to their difficulty, AAD still performs well. To test whether the 

adjusted accuracies differed significantly between conditions, we used a Kruskal-Wallis test. The results 

showed that there was no significant difference between the adjusted accuracies per condition (p = 

0.092).  

 

Figure 4: Adjusted accuracies per condition. AAD results aggregated across all trials of each condition. Each dot 

represents a subject. The conditions with 2 competing speakers and 2 conversations are shown in yellow. The 

conditions with 3 speakers/conversations are shown in green (Sustained Attention and Attention Switch).  
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Behavioural measures  

a. Behavioural questions 

The participants answered behavioural questions about their experience after each trial. To examine 

the relationship between behavioural self-reports and neural AAD performance, the Spearman rank 

correlation test was used. We used the adjusted accuracies for this analysis because they take into 

account the different chance levels per condition. We tested over subjects and conditions to look at a 

general trend (not per condition or subject). The resulting p-values and Spearman’s rho coefficients are 

presented in Table 3. Scatterplots of the behavioural measures can be found in Supplementary Figure 

1.  

Table 3: Spearman rank correlation between behavioural questions and AAD performance (adjusted accuracies) (p-values 
and Spearman rho). An asterisk indicates significant correlations.  

Behavioural measures p-value Spearman’s Rho 

Speech intelligibility 0.005* 0.256 

Listening effort (demands) 0.017* -0.221 

Listening effort (motivation) 0.068 -0.169 

Fatigue 0.7444 0.030 

Difficulty 0.439 -0.072 

Required effort with attention switches 0.227 -0.112 

Among the behavioural measures, only self-reported speech intelligibility (p = 0.005 and ρ = 0.256) and 

listening effort (demands) (p = 0.017 and ρ = -0.221) showed a significant moderate correlation with 

(adjusted) AAD accuracy.  

A covariance matrix (see Supplementary Figure 2) was computed to further explore potential 

interdependencies among the behavioural measures. A strong intercorrelation was observed between 

several behavioural measures (r up to 0.83), suggesting shared variance across constructs such as 

listening effort and difficulty.  

b. Matrix sentence test (SRT) 

The average SRT for our adapted test setup was -13.1 dB SNR across 20 normal-hearing participants, 

with an intersubject standard deviation of 2.33 dB. Intra-subject variability was 0.39 dB. 

We used the Spearman rank correlation to calculate the correlations between the matrix scores per 

subject and their respective (unadjusted) AAD scores under the different conditions. No significant 

correlations were found for 2 Competing Speakers (p = 0.919, ρ = 0.024), 2 Conversations (p = 0.697, ρ 

= 0.093), Sustained Attention (p = 0.449, ρ = 0.100) and Attention Switch (p = 0.457, ρ = 0.098) 

conditions.  

Additionally, we computed the correlation between the average (adjusted) AAD accuracy (per subject) 

across all conditions and the Matrix scores, with a spearman rank correlation and found p = 0.344, ρ = 

0.223. Due to ties in the data (e.g. multiple identical accuracy scores), we also calculated the more 

robust Kendall’s Tau metric, which yielded a small positive correlation (τ = 0.168), which was also not 

statistically significant (p=0.319).  
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Discussion  

In this paper we introduced a conversation-based AAD validation paradigm with three simultaneous 

conversations, each consisting of two turn-taking speakers. This conversation-tracking paradigm 

emphasizes switching between entire conversations rather than individual turn-taking speakers, which 

results in less frequent and less abrupt attention shifts, thereby relaxing the speed requirement for 

AAD algorithms without compromising practical applicability. The results showed that all conditions 

scored significantly higher than chance. There was no significant difference between the conditions 

with 2 simultaneous speakers or with 2 conversations. This means that conversations can be decoded 

just like single speakers, even in this complex scenario. Also, once a third conversation is added to the 

setup/condition, the AAD performance is still significantly better than chance. We found that 3 

competing conversations can be decoded with an accuracy that is substantially better than chance. 

The adjusted accuracies were remarkably close across all conditions. This indicated that AAD performs 

equally well under different experimental conditions with different chance levels, even though raw 

performance drops in the 3 conversations conditions due to the higher number of classes.  

AAD performance in our experimental conditions is similar to what we find in the literature for stimulus 

reconstruction with a linear decoder for a 2-speaker scenario with a window length of 30 seconds. For 

example Biesmans et al. (2017) found a detection accuracy of 81.5% for a window length of 30 seconds. 

In our study, AAD accuracies reached a mean of 76.0% (2 Competing Speakers) and 79.5% (2 

Conversations). Schäfer et al. (2018) found that in 61.1% of the trials, their stimulus reconstruction 

algorithm was able to correctly classify the attention of the listener in a 4-speaker scenario. Note that 

the chance levels differed across studies, so direct comparisons should be interpreted with caution. For 

our conditions with sustained attention (3 conversations, each with 2 turn-taking speakers) the mean 

was 62.4% and for the attention switch condition it was 64.4%.  

An effect of switches or locus of attention would be undesirable for practical applications of AAD, since 

we want AAD to perform well across all different kinds of real-life situations. Reassuringly, we found no 

significant differences between the conditions with and without a switch of attention. Similarly, no 

significant differences were observed between the 3 trials (front, right or left attended) within either 

the Sustained Attention or Attention Switch conditions. This is encouraging since in the trials we 

manipulated both the distance and the location of the speakers. Apart from switches or the locus of 

attention, other factors could influence AAD performance, which can be explored in future research. 

While some factors have already been partially explored (Das et al., 2016, 2018; Van de Ryck et al., 

2025), many remain to be examined. These include both factors that are related to the speakers or to 

the listener, such as the content of the podcasts, participant’s motivation, levels of fatigue, educational 

background, cognition, age, degree of hearing loss, voice familiarity, topic familiarity, level of 

engagement (passive vs active), and listening effort (Van de Ryck et al., 2025).  

To evaluate speech intelligibility in our set-up and compare it with AAD performance, we conducted a 

speech-in-noise test. The typical performance, that is, the average SRT of normal-hearing subjects, on 

the matrix sentence test is -9,5 dB SNR with an intersubject standard deviation of 0.8 dB (Luts et al., 

2014). Using our adapted test protocol, we obtained an average SRT of -13.1 dB SNR across 20 normal-

hearing participants, with a noticeably higher intersubject standard deviation of 2.33 dB. This shows a 

substantially larger spread between individuals, which is almost three times larger than the normative 

data. This suggests higher variability in speech intelligibility among participants in our test setup. 
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Despite this, intra-subject variability was 0.39 dB, which we consider acceptable and within expected 

limits for adaptive speech-in-noise testing.  

Furthermore, we found no correlation between speech intelligibility performance on the Matrix test 

and AAD performance. Scores on the speech-in-noise task did not predict or relate to the brain scores.  

Behavioural measures  

The participants answered 7 behavioural questions after each condition. Only self-reported speech 

intelligibility (p = 0.005 and ρ = 0.256) and listening effort (demands) (p = 0.017 and ρ = -0.221) showed 

a moderate significant negative correlation with (adjusted) AAD accuracy, suggesting that the more 

effort a participant reported, the lower their AAD accuracy. In addition, self-reported (subjective) 

speech intelligibility reflected the performance on objective measured speech intelligibility. The higher 

the speech intelligibility score the higher the AAD accuracy.  

With a covariance matrix we further evaluated potential redundancies between the behavioural 

measures. If participants indicated that the listening experience under a condition was difficult, they 

often also indicated this in the questions regarding listening effort. Therefore, the questions might have 

measured a shared underlying construct such as mental load. This indicates potential redundancy or 

overlap between the different behavioural measures.  

Limitations of the study 

Our study aimed to create a more realistic listening scenario to test the performance of a conversation-

tracking AAD paradigm. We simulated a restaurant scenario with three simultaneous conversations. 

However, a more realistic simulated scenario might also include reverberation and background noise 

(Picou et al., 2019; Puglisi et al., 2021), and a larger number of conversations. 

This study assumes access to clean speech signals and prior knowledge of their conversational 

groupings, which is a challenge that remains to be addressed in hearing aid systems.  

Future research might explore other populations than our homogenous group of young normal-hearing 

subjects, including individuals of various ages and with different degrees of hearing loss. These diverse 

groups are particularly relevant as they represent the eventual users of neuro-steered aids.  

Conclusions  

The majority of the AAD studies have focused on scenarios with two competing speakers in which 

participants were required to attend to one speaker while ignoring the other speaker. We questioned 

this classic approach and showed that it would be more relevant to switch to a conversation-tracking 

paradigm for future validation of AAD algorithms in realistic scenarios to improve the ecological validity 

of AAD research. Tracking entire conversations rather than individual speakers better matches natural 

social interactions. In addition, in real-life situations, more than two speakers frequently talk at the 

same time (cocktail party scenario).  

We tested our conversations-tracking paradigm in a realistic, acoustically complex scenario with three 

simultaneous two-speaker conversations, using three screens and six loudspeakers in a soundproof test 

booth. We collected EEG data to investigate AAD performance under four experimental conditions. 

Twenty young normal hearing subjects were tested, and we found that an AAD algorithm, focused on 

tracking conversations rather than individual speakers, performed well across our experimental 

conditions within an acoustically complex scenario, which supported our claim. These are promising 

results for the future of AAD in practical applications.  
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