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Fast EEG-based decoding of the directional focus
of auditory attention using common spatial patterns
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Abstract—Objective: Noise reduction algorithms in current
hearing devices lack information about the sound source a user
attends to when multiple sources are present. To resolve this
issue, they can be complemented with auditory attention decoding
(AAD) algorithms, which decode the attention using electroen-
cephalography (EEG) sensors. State-of-the-art AAD algorithms
employ a stimulus reconstruction approach, in which the envelope
of the attended source is reconstructed from the EEG and
correlated with the envelopes of the individual sources. This
approach, however, performs poorly on short signal segments,
while longer segments yield impractically long detection delays
when the user switches attention. Methods: We propose decoding
the directional focus of attention using filterbank common spatial
pattern filters (FB-CSP) as an alternative AAD paradigm, which
does not require access to the clean source envelopes. Results:
The proposed FB-CSP approach outperforms both the stimulus
reconstruction approach on short signal segments, as well as
a convolutional neural network approach on the same task. We
achieve a high accuracy (80% for 1 s windows and 70% for quasi-
instantaneous decisions), which is sufficient to reach minimal
expected switch durations below 4 s. We also demonstrate that
the decoder can adapt to unlabeled data from an unseen subject
and works with only a subset of EEG channels located around
the ear to emulate a wearable EEG setup. Conclusion: The
proposed FB-CSP method provides fast and accurate decoding of
the directional focus of auditory attention. Significance: The high
accuracy on very short data segments is a major step forward
towards practical neuro-steered hearing devices.

Index Terms—auditory attention decoding, directional focus
of attention, brain-computer interface, common spatial pattern
filter, electroencephalography, neuro-steered hearing device

I. INTRODUCTION

Current hearing aids, cochlear implants, and other assistive
listening devices contain noise reduction algorithms to assist
people suffering from hearing deficits. However, these algo-
rithms often fail in so-called ‘cocktail party’ scenarios where
multiple speakers or other sound sources are simultaneously
active. This is not only because the noise suppression becomes
more difficult, but primarily because the hearing device lacks
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information about which source the user intends to attend and
which other sources need to be treated as background noise.

Instead of using unreliable heuristics, such as selecting the
most frontal source or the source with the highest intensity, one
could try to extract the attention-related information directly
from where it originates, i.e., the brain. This is known as
auditory attention decoding (AAD). The development of AAD
algorithms that process brain signals to, e.g., steer a speech
enhancement algorithm towards the attended speaker in a
mixture of other speakers, could lead to a new class of so-
called ‘neuro-steered’ hearing devices [1], [2], improving the
quality of life of people suffering from hearing deficits.

The discovery that the cortical activity follows the envelope
of the attended speech stream [3]–[5] is in this context
crucial. This insight laid the foundation of a first class of
AAD algorithms based on non-invasive neural recordings from
magneto- or electroencephalography (MEG/EEG). These al-
gorithms typically employ a stimulus reconstruction approach
in which a decoder reconstructs the attended speech envelope
from the EEG. The decoded envelope is then correlated with
the speech envelopes of the individual speakers. The speaker
corresponding to the highest correlation coefficient is identified
as the attended speaker. This algorithm was proposed for the
first time in [6], using a linear minimal-mean-squared-error-
based decoder. Later, other variations of this AAD algorithm
were developed, of which an overview can be found in [2].

AAD algorithms using the stimulus reconstruction ap-
proach, however, all suffer from the same limitations:

1) The stimulus reconstruction approach takes too long to
make a reliable decision. The AAD accuracy (the per-
centage of correct decisions) drastically decreases with
shorter decision windows, especially below 10 s [6]–[8].
A decision window corresponds to the signal length over
which the correlation coefficients between the EEG-
decoded envelope and the original speech envelopes
are estimated, where short decision windows result in
unreliable correlation estimates. This results in a speed-
accuracy trade-off. In [8], it is shown that short decision
window lengths are favorable in the context of robust
AAD-based gain control during dynamic switching, even
if they have a lower accuracy. Nevertheless, due to the
low accuracy for these short decision window lengths, it
theoretically takes more than 15 s to establish a reliable
and controlled gain switch to the new attended speaker
after the user switches attention [2], which is impracti-
cally long for neuro-steered hearing device applications.
The stimulus reconstruction approach inherently suffers
from this limited performance due to the decoding of a
low-frequency envelope, which contains relatively little
information per second, as well as due to the low signal-
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to-noise ratio of the neural response to the stimulus in
the EEG.

2) The stimulus reconstruction approach requires the
(clean) individual speech envelopes. Although several
attempts have been made to combine speech separation
algorithms with AAD [1], [9]–[11], the demixing of all
speech envelopes adds a lot of overhead, and the demix-
ing process often negatively affects AAD performance
or may even completely fail in practical situations.

In this paper, we employ a new paradigm that avoids these
limitations, focusing on decoding the directional focus of
attention from the EEG, rather than directly identifying the
attended speaker. Inherently, this avoids the need of demixing
the speech mixtures into its individual contributions. More-
over, we hypothesize that this paradigm will improve AAD
accuracy for short decision window lengths, as it is based on
brain lateralization, which is an instantaneous spatial feature,
rather than a correlation-based temporal feature.

This new AAD paradigm is justified by recent research
that shows that the auditory attentional direction is spatio-
temporally encoded in the neural activity [4], [12]–[18], ergo,
that it could be possible to decode the spatial focus of
attention from the EEG. In [19], an AAD algorithm based on
a convolutional neural network (CNN) has been established to
decode the spatial locus of attention in a competing speaker
scenario, which showed very good results on short decision
windows (76.1% accuracy on 1 s decision windows). However,
this CNN-based approach shows high inter-subject variability
and requires large amounts of training data (e.g., data of other
subjects in combination with subject-specific data as in [19]) in
order to train a subject-specific decoder. Therefore, in this pa-
per, we focus on data-driven linear filtering techniques, which
typically require less training data, are more robust and stable,
and are computationally cheaper, as well as easier to update.
More specifically, we exploit the direction-dependent spatio-
temporal signatures of the EEG using (filterbank) common
spatial pattern (FB-CSP) filters, which are popular in various
brain-computer interface (BCI) applications [20], [21].

In Section II, we concisely introduce the (FB-)CSP classifi-
cation pipeline to determine the directional focus of attention.
In Section III, we describe the data used to run experiments,
the concrete choices for the FB-CSP filter design, and the
performance metrics to transparently and statistically validate
the experiments that are reported and analyzed in Section IV.
Conclusions are drawn in Section V.

II. DECODING DIRECTION OF ATTENTION USING CSPS

In this section, we review the CSP procedure [20] to decode
the directional focus of attention. CSP filtering is one of the
most popular techniques used for spatial feature extraction in
BCI applications, e.g., in motor imagery [20]–[22]. The goal
is to project multichannel EEG data into a lower-dimensional
subspace that optimally discriminates between two conditions
or classes. This is established by optimizing a spatial filter in
a data-driven fashion, which linearly combines the different
EEG channels into a few signals in which this discriminative
property is maximally present.

For the sake of an easy exposition, we first define CSP
filtering for a binary AAD problem, i.e., decoding whether
a subject attends to one of two speaker positions, in Sec-
tion II-A and II-B. In Section II-C, we explain how this can
be generalized to more than two classes/directions. Finally,
in Section II-D, we explain how the method can be applied
to EEG data from unseen subjects without the need for any
ground-truth labels on their auditory attention.

A. CSP filtering

Consider a zero-mean C-channel EEG signal x(t) ∈ RC×1,
which can on each time instance t be classified into one of two
classes C1 and C2 (e.g., attending the left or right speaker). The
goal is to design a set of K spatial filters W ∈ RC×K that
generate a K-channel output signal with uncorrelated channels
y(t) = WTx(t) ∈ RK×1, where the K

2 first filters maximize
the output energy when t ∈ C1, while minimizing the output
energy when t ∈ C2, and vice versa for the other K

2 filters.
For example, the first column w1 of W results in y1(t) =

wT
1x(t), which should have a maximal output energy when

t ∈ C1 and a minimal output energy when t ∈ C2:

w1 = argmax
w

1
|C1|

∑
t∈C1

(wTx(t))
2

1
|C2|

∑
t∈C2

(wTx(t))
2

⇔ w1 = argmax
w

wTRC1w
wTRC2w

,

with
∣∣C1/2∣∣ the number of time instances in C1/2 and

RC1/2 =
1∣∣C1/2∣∣

∑
t∈C1/2

x(t)xT(t) (1)

the sample covariance matrices of class C1 and C2. Fixating
the output energy when t ∈ C2, i.e., wTRC2w = 1, which is
possible because w is defined up to a scaling, and solving the
optimization problem using the method of Lagrange multipli-
ers leads to the following necessary condition for optimality:

RC1w = λRC2w, (2)

which corresponds to a generalized eigenvalue problem. It
can easily be seen that the maximum is obtained for the
generalized eigenvector corresponding to the largest general-
ized eigenvalue. A similar reasoning can be followed for wK ,
which maximizes, resp. minimizes the output energy when
t ∈ C2, resp. C1, and is equal to the generalized eigenvector
corresponding to the smallest generalized eigenvalue in (2).
The other spatial filters can be found as the subsequent largest
and smallest generalized eigenvectors. In its core essence, de-
signing CSP filters thus corresponds to a joint diagonalization
of the class-dependent covariance matrices [20].

B. Classification using CSP filters

The CSP filtering technique can now be employed in a
classification pipeline, in which a newly recorded EEG signal
x(t) ∈ RC×1, containing C channels, is classified into one
of two classes, representing different directions of auditory
attention (Fig. 1). The following sections describe the different
components of this classification pipeline.
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Fig. 1: The FB-CSP filter outputs are used to generate the features that can be used to classify the EEG segment X.

1) Filterbank CSP (FB-CSP): Paramount for a well-
performing CSP filtering is the selection of the appropriate
frequency band related to the feature at hand. For the case
of auditory attention decoding, one possibility is filtering in
the α-band [4], [13], [14], [17], [18]. We here, however, do
not want to make an a priori choice of the relevant frequency
band(s). We thus adopt the so-called filterbank CSP (FB-CSP)
technique, in which the EEG is first filtered into different
frequency bands, after which the CSP filters are trained and
applied per frequency band [20]–[22]. The filterbank thus
results in B (number of frequency bands) filtered signals
xb(t) ∈ RC×1, one per frequency band b ∈ {1, . . . , B}, for all
C EEG channels. The application of the pre-trained CSP filters
per frequency band Wb ∈ RC×K results in B K-dimensional
output signals yb(t) = WT

bxb(t) ∈ RK×1.
An alternative extension, which is not pursued here, is the

so-called common spatio-spectral pattern filter, in which the
relevant frequency bands are determined fully data-driven, as a
spatio-temporal filter is optimized to be maximally discrimina-
tive [23]. This comes, however, at the cost of an increase in pa-
rameters and corresponding problems with overfitting, in par-
ticular for high-density EEG data as used in this paper. These
problems can partly be overcome by using more advanced
regularization or dimensionality reduction techniques on the
extended spatio-temporal covariance matrices (e.g., principal
component analysis [24] or the pre-selection of relevant time
lags to introduce sparsity). Furthermore, a different filter basis
than the Dirac basis could be chosen to reduce the number of
parameters or to incorporate expert knowledge [24].

2) Feature extraction: The outputs of the FB-CSP filtering
are now per decision window transformed into a feature vector
f ∈ RKB×1 that can be used for classification. This is
typically done by computing the log-energy over these output
signals per decision window [20], using a pre-defined decision
window length T :

f =



log
(
σ2
1,1

)
...

log
(
σ2
K,1

)
log
(
σ2
1,2

)
...

log
(
σ2
K,B

)


,

with the output energy σ2
k,b of the kth output yk,b(t), for the

bth frequency band:

σ2
k,b =

T∑
t=1

yk,b(t)
2
,

where T is the number of time samples in the decision window.
Note that the decision window length T determines how much
EEG data is used to make a single decision about the auditory
attention of the subject. In a practical system, this will define
the inherent delay to detect switches in attention.

3) Classification: The feature vector f is used as the input
for a binary classifier to determine the directional focus of
attention. We here adopt Fisher’s linear discriminant analy-
sis (LDA), which is traditionally used in combination with
CSP filters [20]. In LDA, similarly to CSPs, a linear filter
v ∈ RKB×1 is optimized to provide the most informative
projection. In this case, the most informative projection cor-
responds to maximizing the in-between class scatter, while
minimizing the within-class scatter. This again leads to a
generalized eigenvalue problem, which can, in this case, be
solved analytically, leading to the following solution [25]:

v = Σ−1w (µ2 − µ1) , (3)

with Σw the covariance matrix of the features f computed
across both classes, and µ1/2 the class (feature) means. Choos-
ing the threshold or bias as the mean of the LDA projected
class means leads to the following decision function:

D(f) = vTf + b,

with v defined in (3) and bias

b = −1

2
vT(µ1 + µ2) . (4)

Finally, f is classified into class 1 if D(f) > 0 and into class
2 if D(f) < 0.

C. Multiclass CSP classification

The classification scheme in Fig. 1 can be easily extended to
a multiclass scenario, in which multiple directions of auditory
attention are combined. This can be achieved by applying
the strategy of Section II-A and II-B in combination with
an appropriate coding scheme (e.g., one-vs-one, one-vs-all),
both for the CSP and LDA step, or, by approximating a joint
diagonalization of all the class covariance matrices at once in
the CSP block [20], and only applying a coding scheme to the
LDA step. Note that also the stimulus reconstruction approach
is applicable for various directions/speakers [11], [26].

In this paper, we adopt the popular one-vs-all approach in
BCI research [20]. In this approach, an FB-CSP filter and
LDA classifier is trained for each direction to discriminate
that particular direction from all the other directions. Given M
directions (classes), this means that in (2), the RC2 is replaced

by
M∑
i=2

RCi , i.e., the sum of the covariance matrices of all

classes except class 1. Correspondingly, an LDA classifier is
trained to discriminate direction 1 from all the other directions.
This is done for every other direction m ∈ {1, . . . ,M}.
Given M directions (classes), this thus results in M different
CSP/LDA pairs.

In the end, for a new segment, the posterior probability
of each classifier is computed using the multivariate normal
distribution for the likelihood (which is assumed by LDA)
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and a uniform prior. To finally determine the correct class,
the maximal posterior probability is taken over the M LDA
classifiers.

D. CSP classification on an unseen subject

The FB-CSP filters and LDA classifiers can be trained subject-
specifically, meaning that the training is based on EEG data
from the actual subject under test. However, in a neuro-steered
hearing device application, this would require a cumbersome
per-user calibration session where the subject is asked to attend
to specific speakers with the intention to collect ground-truth
labels to inform the FB-CSP filter design. To eliminate this
requirement, one could train an AAD model in a subject-
independent manner, meaning that data from subjects other
than the test subject are used in the training phase, as done
in [6] and [19] for the stimulus reconstruction and CNN ap-
proaches. This pre-trained model could then be ‘pre-installed’
on every neuro-steered hearing device, using it in a ‘plug-and-
play’ fashion.

However, it is known from the BCI literature that the
FB-CSP method often fails in such subject-independent set-
tings due to too large differences in the spatial/spectral EEG
patterns across different subjects [27]. To improve perfor-
mance, the data from the subject under test can be used
to modify the pre-trained subject-independent FB-CSP fil-
ters/LDA classifier. We adopt here two popular approaches
to perform such adaptations, without requiring ground-truth
labels for the data of the unseen test subject:

1) A very effective way of unsupervised updating of an
LDA classifier for BCIs has been proposed in [28].
They conclude that simply updating the bias of the LDA
classifier in (4) results in a significant improvement.
Here, we update the bias of the subject-independently
trained LDA with the unlabeled subject-specific features
(resulting from the subject-independent FB-CSP filters),
as this only requires the global mean, which is label-
independent:

D(f) = v(SI)T
f + b(SS),

with subject-independent coefficients v(SI) as computed
in (3) on the data from all other subjects, and the subject-
specific bias computed as:

b(SS) = −v(SI)T
µ(SS),

using the global mean µ(SS) over all features f (SS)

of the new subject. The only requirement is that the
subject-specific data on which the bias is updated is
approximately balanced over both classes.

2) In [27], the authors found that a subject-independent
FB-CSP method often fails, potentially because of the
too high spectral subject-to-subject variability when us-
ing many narrow frequency bands. To overcome this
issue, we replace the filterbank setting with a single filter
(B = 1) to extract and pool a broader frequency range,
of which the boundaries will be determined experimen-
tally. This basically reduces the FB-CSP method to a
CSP classification method with a prior bandpass filtering
of the data. Note that only for the subject-independent

1

2

3
+90◦-90◦

0◦-5◦ +5◦ +30◦-30◦

Fig. 2: The competing speakers of Dataset II are located at different angular
positions. The azimuth plane is divided into three angular domains, which are
used in the multiclass problem of Section IV-D.

experiments (Section IV-G), the FB-CSP method is
reduced to a single frequency band. In all other subject-
specific experiments, the FB-CSP approach is used.

III. EXPERIMENTS AND EVALUATION

A. AAD datasets

We apply the proposed FB-CSP classification method on two
different datasets. The first dataset (Dataset I) has already been
used extensively in previous work, mostly in the context of
the stimulus reconstruction approach [2], [7], [8], [19], [29],
and is publicly available [30]. It consists of 72 minutes of
EEG recordings for each of the 16 normal-hearing subjects,
who were instructed to attend to one of two competing (male)
speakers. The competing speakers were located at -90◦ and
+90◦ along the azimuth direction and there was no background
noise. More details can be found in [7]. This dataset is used
in all experiments, except those of Section IV-C and IV-D1.

The second dataset (Dataset II) consists of 138 minutes of
EEG recordings for each of the 18 normal-hearing subjects,
again instructed to attend to one of two male speakers, how-
ever, now with background babble noise at different signal-
to-noise ratios. Furthermore, per subject, different angular
speaker positions are combined (i.e., different angular sepa-
ration between the competing speakers): -90◦ versus +90◦,
+30◦ versus +90◦, -90◦ versus -30◦, and -5◦ versus +5◦

(see Fig. 2). More details can be found in [26]. This second
dataset allows us to validate the decoding of the directional
focus of attention for different angular separations and is used
in Section IV-C and IV-D. Both datasets are recorded using a
C = 64-channel BioSemi ActiveTwo system, using a sampling
frequency of 8192Hz.

B. Design choices

1) EEG bandpass filtering: Before CSP filtering, a filter-
bank is applied to the EEG, consisting of B = 14 8th-order
Butterworth filters. The first filter corresponds to frequency
band 1−4Hz, the second to 2−6Hz, the third to 4−8Hz. This
continues, with bands of 4Hz, overlapping with 2Hz, until the
last band 26−30Hz. In this way, a similar range of frequencies
is covered as in [19]. The group delay is compensated for per

1The code for the subject-specific experiments on this dataset are available
at https://github.com/exporl/spatial-focus-of-attention-csp.
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filter using the filtfilt-function in MATLAB, resulting in a zero-
phase filtering. Afterwards, the EEG data is downsampled to
64Hz. No further preprocessing or artifact rejection is applied,
as the CSP filters already implicitly suppress EEG content that
is irrelevant for discrimination between both classes through
a spatial filtering per frequency band.

2) Covariance matrix estimation: To avoid overfitting in
the estimation of the class covariance matrices in (2), the
sample covariance matrices in (1) are regularized using ridge
regression:

R
(reg)
C1/2 = αRC1/2 + βI,

with RC1/2 the sample covariance matrix from (1) and I ∈
RC×C the identity matrix. The regularization parameters α
and β are not estimated using cross-validation (CV) but are
analytically determined (details in [31]). This method has
proven to be superior in various BCI applications and is
the recommended state-of-the-art covariance matrix estima-
tor [21].

3) CSP filter design: As described in Section II-A, tra-
ditionally, the generalized eigenvalues are used to select an
appropriate subset of filters, as they represent the relative
output energies of each spatially filtered signal. However,
these generalized eigenvalues can be influenced by outlier
segments with a very high variance, which consecutively, can
(negatively) affect the selection of the CSP filters. To avoid
this issue, the filters are selected based on the ratio of median
output energies (RMOE) between both classes [20], taken over
all training windows with length equal to the maximal decision
window length that is used in the analysis.

Furthermore, K = 6 CSP filters, corresponding to the 3
most discriminative filters for one and the other direction,
are selected based on the cut-off point on the plot of sorted
RMOEs.

C. Performance evaluation

The FB-CSP classification pipeline is first tested per subject
separately using ten-fold CV. The data per subject are therefore
split into segments of 60 s (30 s for dataset II) and randomly
shuffled into ten folds. This division into segments is per-
formed in order to be able to do random shuffling over time,
such that the impact of factors such as fatigue is minimized.
Only in Section IV-B and the Supplementary Material, a
leave-one-story+speaker-out CV (LOSSO-CV) is performed,
retaining the chronological order of the segments that originate
from continuously recorded trials. For each 60/30 s segment,
the mean is set to zero per channel. Furthermore, each segment
is normalized over all channels at once (the Frobenius norm
is set to one), to assign equal weight to each segment in
the training phase. During the testing phase, the normalized
60/30 s segments are split into shorter sub-segments, referred
to as ‘decision windows’ (of which the length will be varied).
The significance level for the accuracy is determined via the
inverse binomial distribution [6].

In [8], the importance of evaluating AAD algorithms on
different decision window lengths, i.e., the amount of data used
to make an AAD decision, has been stressed. In typical AAD
algorithms, a trade-off exists between the decision window

length and accuracy. In [8], the optimal trade-off is determined
by means of a criterion based on the expected time it takes
to perform a stable gain switch in an attention-steered gain
control system. Based on a stochastic model for the latter,
and for any given decision window length, the expected time
to switch the gain between speakers is minimized under the
constraint of guaranteeing a pre-defined level of ‘stability’
to avoid spurious gain switches due to errors in the AAD
decisions. The latter is achieved by increasing the number
of gain levels, thereby increasing the gain switch duration.
The optimal trade-off point between decision window length
and accuracy is found as the one that leads to the shortest
expected switch duration under this model, which is referred to
as the minimal expected switch duration (MESD). The MESD
is a single-number metric, facilitating the use of statistical
tests to compare different AAD algorithms, as it resolves
the inherent trade-off between decision window length and
AAD accuracy. We refer to [8] for more details.2 In [8], it
was found that the optimal decision window length selected
within the computation of the MESD consistently shows
the importance of short decision window lengths (< 10 s),
allowing faster and more robust switching between speakers
despite the lower AAD accuracy. To determine the accuracies
on shorter decision window lengths, the left-out segments
are split into shorter decision windows, on which the testing
routine in Fig. 1 is applied. Note that the MESD is a theoretical
metric and only provides a theoretical prediction on how
an optimized AAD-based gain control algorithm would track
attention switches [8]. Here, we do not experiment with data
containing actual attention switches.

The hyperparameters of the LDA classifier are optimized
on the CSP output energies of the training set using five-fold
CV.

IV. RESULTS AND DISCUSSION

A. Comparison with stimulus reconstruction approach

The FB-CSP classification method is compared to the current
state-of-the-art AAD method, which adopts the stimulus recon-
struction approach, on Dataset I. Here, canonical correlation
analysis (CCA) is used, which is considered to be one of the
best decoding methods to date, outperforming other backward
and forward models [2]. In CCA, a jointly forward (i.e.,
mapping the stimulus envelope to the EEG) and backward
(i.e., mapping the EEG to the stimulus envelope) model is
trained and applied to new data [24]. The attended speaker is
identified by classifying the difference between the canonical
correlation coefficients of the competing speakers using an
LDA classifier. A forward lag of 1.25 s is used on the speech
envelopes and a backward lag of 250ms is used on the EEG
as in [2], [24]. The CCA method is tested using the same ten-
fold CV procedure as for the FB-CSP method. The number
of correlation coefficients used in the LDA classification is
determined by an inner ten-fold CV loop. No a priori principal
component analysis or change of filter basis as in [24] is
used. The EEG and speech envelopes, which are extracted

2A toolbox to compute this metric is available at
https://github.com/exporl/mesd-toolbox.
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using a power-law operation with exponent 0.6 after subband
filtering [7], are filtered between 1 and 9Hz (thus mainly
without α/β-activity, which was determined to be optimal
for linear stimulus reconstruction [6], [7], [11], [26], [29])
and downsampled to 20Hz. Note that this method employs an
inherently different strategy for AAD than FB-CSP, by (in a
way) reconstructing the attended speech envelope, rather than
decoding the directional focus of attention.

In Fig. 3a, it is observed that this stimulus reconstruction
approach is characterized by a degrading accuracy for shorter
decision window lengths, while the accuracy of the FB-CSP
method barely decreases. It thus clearly outperforms the
stimulus reconstruction approach for short decision window
lengths. This is one of the most important properties of this
new strategy for AAD to decode the directional focus with
FB-CSP rather than reconstructing the stimulus. This effect
was also seen in [19], where the directional focus is decoded
based on a CNN. While the stimulus reconstruction approach
tries to determine the attended speaker by reconstructing the
attended speech envelope, the FB-CSP method only needs
to discriminate between two angular directions, which is an
inherently easier filter design strategy. Furthermore, in the
former, correlation is used as a feature, of which the estimation
is inaccurate when computed on short decision windows,
in particular because the correlation coefficients observed in
stimulus reconstruction are very small, making their estimation
susceptible to noise. Lastly, as mentioned before, the FB-CSP
method is mostly based on an instantaneous spatial feature
(brain lateralization) rather than a temporal feature.

Note that the accuracy of the FB-CSP method exhibits a
higher inter-subject variability than the stimulus reconstruction
method. We do not consider this as a major disadvantage of
the FB-CSP method, as, for example, on 1 s decision windows,
performance is still better for all subjects compared to CCA.
On average, there is a 20% gap in accuracy for 1 s decision
windows.

For long decision window lengths, however, CCA outper-
forms the FB-CSP method. To resolve this trade-off and to
(statistically) determine which method performs better in a
context of neuro-steered gain control for hearing devices, we
use the MESD metric [8], a relevant criterion for AAD that
optimizes the speed-accuracy trade-off (Section III-C) and thus
resolves the inconclusiveness based on the performance curve.
Fig. 3b shows the MESDs per subject, for both algorithms. It is
clear that FB-CSP (median MESD 4.1 s) results in much faster
switching than CCA (median MESD 17.0 s). A Wilcoxon
signed-rank test confirms that there indeed is a significant
difference between the MESD for the FB-CSP method versus
CCA (W = 0, n = 16, p < 0.001). The sustained performance
for short decision window lengths thus results in a superior
performance (for all subjects) of the FB-CSP method over
CCA. We note that the MESD is by definition longer than
the decision window length (see Section III-C and [8]). In
particular, the theoretical lower limit for the MESD is 3 s when
using a minimal decision window length of 1 s3 [8].

3The theoretical lower limit of the MESD is equal to 3× the shortest
decision window length that is tested with, as for 100% accuracy, three steps
must be taken in the Markov chain [8].
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Fig. 3: (a) The accuracy (mean ± standard error of the mean across
subjects; Dataset I) of the FB-CSP classification method barely decreases for
shorter decision window lengths and outperforms the stimulus reconstruction
approach (CCA) for short decision window lengths. Note that the significance
level (‘sign. level’) decreases for shorter decision window lengths due the
higher number of test windows. (b) The median MESD (black vertical line)
is significantly lower (better) for the FB-CSP method than for the stimulus
reconstruction approach (CCA). Each dot represents one subject, the lines
connect the same subjects across methods.

B. Comparison with convolutional neural network approach

In [19], a convolutional neural network (CNN) is used to
perform the same task, i.e., decoding the directional focus
of attention. This CNN approach has been validated on the
same dataset (Dataset I), but with a different testing procedure
to avoid overfitting on speakers, i.e., LOSSO-CV instead of
random CV. To provide an honest and transparent comparison
of our FB-CSP method with this CNN method, we have cross-
validated the performance of the FB-CSP method in the same
way as in [19], at the cost of less training and testing data.
While data of other subjects are included in the training of
the CNN method as a regularization technique [19], this is
not done for the FB-CSP method. The EEG data are filtered
between 1− 32Hz, as proposed in [19] and equivalent to the
FB-CSP method.

Given the performances in Fig. 4, we, first of all, want to
stress that the results of the FB-CSP method for a LOSSO-CV
are very similar to using a random CV (Fig. 3). This confirms
that, as opposed to the CNN method, our FB-CSP method
does not overfit on speakers or stories, which could occur
when using random CV. For the CNN method, the results
were significantly better when not leaving out the speaker
and/or story in the training set, which could be a sign of
overfitting [19]. Furthermore, our FB-CSP method does not
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Fig. 4: (a) The FB-CSP method outperforms the CNN method with on average
≈ 4% in accuracy (mean ± standard error of the mean; Dataset I). (b) The
median MESD is lower for the FB-CSP method than for the CNN method.
Note that when the MESD of a subject is not connected to the corresponding
MESD, it corresponds to an outlier value of the other method.

perform worse than the CNN method, as a Wilcoxon signed-
rank test (W = 56, n = 15, p = 0.85, one outlier subject
removed) shows no significant difference based on the MESD
(Fig. 4b).

To conclude, we have identified the following advantages
of the FB-CSP method over the CNN method:
• The FB-CSP method does not perform worse than the

CNN method, it even tends to outperform it.
• The FB-CSP method shows less inter-subject variability

and is more stable (see the standard error of the mean in
Fig. 4a and the spread in Fig. 4b).

• The FB-CSP method requires less training for a better
performance. The CNN method uses training data of
all (other) subjects, including the test subject, to avoid
overfitting.

• The FB-CSP method has a lower computational complex-
ity, which is paramount to be applicable in mobile and
wireless hearing devices.

C. Binary FB-CSP classification at various speaker positions

Whereas in the previous experiments, the competing speakers
are located at -90◦/+90◦, this section treats binary AAD
classification at the various speaker positions that are present
in Dataset II. Fig. 5 shows the performance of the FB-CSP
classification method. For each pair of competing speaker po-
sitions, all babble noise conditions are pooled and the FB-CSP
classification method is applied. Each pair of positions is thus
treated separately, with independently trained CSP filters and
LDA classifiers.

First of all, the results in Fig. 5a confirm and reproduce the
previous results from Fig. 3a. The accuracy for the -90◦/+90◦
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-90◦/-30◦→ excl. 2 outliers (8.3/27.9 s)

Minimal expected switch duration [s]
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Fig. 5: (a) The FB-CSP classification method performs well for all speaker
separation angles (Dataset II). Again, the accuracy (mean ± standard error of
the mean) of the FB-CSP classification method barely decreases for shorter
decision window lengths. (b) The median MESD is lower (better) for the
-90◦/+90◦ than for the other scenarios. Decoding the directional focus of
attention for speakers that are positioned at the same side of the head is harder
than when they are symmetrically positioned on different sides of the head.

condition is on average even 10% higher and there is a smaller
inter-subject variability (standard deviation is on average over
all decision window lengths ≈ 7%, while this was ≈ 10%
in Dataset I). A possible explanation for this difference in
performance is that due to the presence of background noise,
the spatial cues become more important; or that the subject has
to focus harder, thereby generating stronger neural responses.
A similar advantageous effect of the presence of background
noise was observed in [26].

Furthermore, these results allow analyzing the effect of
the angular speaker separation on the decoding performance.
The main result from these performances is that decoding
the directional focus of attention from the EEG using the
FB-CSP classification method still works for various angular
scenarios, and even when the speakers are positioned very
closely together (-5◦/+5◦) or are positioned at the same side of
the head (+30◦/+90◦ and -90◦/-30◦). The MESDs in Fig. 5b
confirm these findings.

As can be expected, the decoding for the -90◦/+90◦ sce-
nario is easier than in the other scenarios. Although the decod-
ing will fail when speakers are co-located at the same spatial
position, the FB-CSP method still succeeds in reliably discrim-
inating between very closely positioned speakers at -5◦/+5◦.
Furthermore, as the results for -5◦/+5◦ are still better than
when the competing speakers are positioned at the same side
of the head, it seems that when speakers are located at different
sides of the head, this provides a substantial advantage in
decoding the directional focus of attention. However, even
when speakers are located at the same side of the head, the
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method finds sufficient spatio-temporal discriminative patterns
to differentiate between speaker locations.

As an important consequence of these results, the FB-CSP
method can be used as a basic building block for a new AAD
strategy in which, for example, the whole plane along the
azimuth direction is split into angular domains. Depending
on the multiclass coding strategy, several FB-CSP filters are
then combined to locate the attended speaker in the plane and
to steer a beamformer into the correct direction. This AAD
strategy is tested in the following section.

D. Multi-condition and -class FB-CSP classification

Using Dataset II, we can verify whether a multi-condition or
-class strategy is feasible. In the first experiment, all data are
pooled and the FB-CSP classifier tries to determine whether
the right- or left-most speaker is attended. In the second
experiment, all angles are divided into three angular domains
(left/frontal/right) as depicted in Fig. 2.

1) Classifying the right/left-most speaker as attended
speaker: Instead of training an FB-CSP for each angular
condition separately, all conditions can be pooled and the
FB-CSP classifier can be trained to determine whether the
user is listening to the right-most or left-most speaker (in a
two-speaker scenario), independent of where these speakers
are positioned in the plane. As a consequence, a speaker
positioned at -30◦ (which is located at the left side of the
head) can be the right-most attended speaker, relative to -90◦,
while +30◦ (which is located at the right of -30◦) can be
the left-most attended speaker, relative to +90◦. This angular
condition-independent FB-CSP classifier could then be used
generically to steer a beamformer or to select the attended
speaker, provided the angular positions of the competing
speakers are known or can be detected from a hearing device’s
microphone array. In order to test this, all the data of Dataset II
are pooled and randomly divided into ten folds. Note that
a limitation of this experiment is that the different speaker
positions only appear in fixed pairs and that not every position
is combined with all other positions.

Fig. 6 shows that the accuracy when classifying attention
to the left/right-most speaker is still high (77.7% on average
over all decision window lengths), although lower than when
classifying each condition separately (Fig. 5a). This confirms
that this strategy is viable.

When investigating the MESDs per angular condition (still
when classified all together), it is clear that there are two
groups (Table I): the first group contains the conditions where
the competing speakers are located along different sides of the
head and show only a small increase in MESD compared to
when they are classified separately (compare with Fig. 5b),
while there is a larger increase in MESD when the competing
speakers are positioned at the same side of the head. Further-
more, the first group shows a lower MESD than the latter one.

2) Classifying between left/frontal/right direction: The in-
tuitive multiclass extension of the binary classification of
only two angular conditions is to classify multiple speaker
positions at the same time, i.e., determining the directional
focus of attention among several possibilities. A possible
strategy could be to divide the azimuth plane into different

1 2 5 10 20 30
50

60

70

80

90

100

left/right-most
three-class

Decision window length [s]

Accuracy [%]

Fig. 6: These peformance curves show that even when pooling all conditions
and only classifying the attention to the left/right-most speaker, as well as
dividing the upper half-plane in three angular domains as in Fig. 2, the
accuracy (mean ± standard error of the mean; Dataset II) is still high.

Angular condition MESD LR-most [s] MESD sep. [s]

-5◦/+5◦ 4.53 3.77
-90◦/+90◦ 3.77 3.49
+30◦/+90◦ 5.74 4.20
-90◦/-30◦ 8.22 4.19

Tab. I: The median MESD is lower when the speakers are located on different
sides of the listener. Furthermore, the MESDs are higher compared to the case
where each condition is classified separately (MESD sep.; see Fig. 5b).

angular domains, which are classified together. In this way,
a beamformer could be steered towards the correct angular
domain (without having to also estimate the direction of arrival
of each speaker separately from the microphone recordings).
The higher the spatial resolution of the multiclass strategy, the
lower the chance that multiple speakers are present in the same
angular domain (in case of multiple competing speakers), but
the higher the misclassification error. In case multiple speakers
are detected within each angular domain, more angle-specific
classifiers or the aforementioned strategy of classifying the
left/right-most classifier (Section IV-D1) could be used as a
complementary approach.

To test the feasibility of this strategy, we divide the azimuth
plane into three classes based on speaker position as in Fig. 2.
The segments in Dataset II are divided into these classes
accordingly. Note that the same limitation as before (limited
speaker pairs) holds here and that there are no other positions
present than ±90◦ in domains 1 and 3. A one-versus-all
coding scheme is used, which means that there are three binary
classifiers trained, which each classify one angular domain
versus the other two domains combined.

Fig. 6 shows the performance curve for this three-class
problem. The accuracies are very high and show low subject-
to-subject variability (standard deviation ≈ 5.6% over all
decision window lengths). Note that the accuracy decreases
faster for shorter decision window lengths than usual. This
effect is to a lesser extent also present in the binary case
and is amplified here because of the multiclass nature of this
problem. However, the decrease is still very limited and results
in short switch durations (median MESD of 4.32 s over all
angular domains, 4.58 s for switching to domain 1, 4.01 s for
switching to domain 2, and 5.13 s for switching to domain 3).
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Fig. 7: The five electrodes of the 64-channel BioSemi system closest to the ear
are selected for the channel selection in Section IV-E (blue). In Section IV-H,
38 central electrodes are chosen (orange).

E. Channel selection

For the FB-CSP method to be applicable in the context of
neuro-steered hearing devices, which is an inherently mobile
application, we test the method with a reduced set of EEG
channels. However, we do not adopt a traditional data-driven
feature/channel selection method but take an application-based
point of view. The five electrodes closest to each ear are
selected from the 64-channel BioSemi system (see the blue
channels on Fig. 7). This can be viewed as a representative
selection that mimics current behind-the-ear EEG approaches
such as the cEEGrid array [32], which has also been used
for AAD [33]. However, it is noted that our analysis is not
fully representative of an actual cEEGrid setup due to different
recording equipment and different electrode positions. We
mainly want to verify whether decoding the directional focus
of attention while dominantly measuring from the electrodes
on the temporal lobe, is possible.

To eliminate the dependence on an ‘external’ or joint ref-
erence electrode, the selected EEG channels are re-referenced
using a common average reference for each ear separately. By
averaging and re-referencing per each ear separately, the two
sets of ear channels are galvanically isolated, i.e., emulating
two standalone EEG sensor devices which do not have to
be connected with a wire. Furthermore, common average
referencing is used to eliminate the need for selecting a
particular reference electrode. Per ear, one random (as CSP
filtering is invariant to the removed channel) re-referenced
EEG channel is removed to avoid rank-deficiency in the EEG
covariance matrices, effectively leading to 4 channels per ear
(C = 8). After the removal of the other channels and the re-
referencing, the complete FB-CSP pipeline (Fig. 1) is retrained
and evaluated using the reduced set of EEG channels.

Fig. 8a shows that the decrease in accuracy on Dataset I
(binary classification) when selecting the ear channels is
limited to ≈ 5.6% on average. Furthermore, the median
MESD increases from 4.10 s (64 channels) to 4.74 s, which
is statistically significant (W = 0, n = 16, p < 0.001), but is
still limited. Lastly, from Fig. 8b, it can be seen that there is
only a limited increase in variability over subjects.

Furthermore, also the performance of CCA is shown, using
the same reduced set of channels and corresponding re-
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Fig. 8: (a) The mean accuracy (± standard error of the mean) when using only
ten electrodes close to the ear on Dataset I (binary classification) decreases
relatively little compared to the full 64-channel setup. (b) There is a limited
increase in median MESD when selecting ten electrodes for the FB-CSP
method, while the CCA method greatly suffers from the channel reduction
(compared to Fig. 3b).

referencing method. The accuracy decreases on average with
≈ 10% over all decision window lengths (Fig. 3a) and does
not outperform the FB-CSP method anymore on long decision
window lengths. The median MESD drastically increases as
well (Fig. 8b). The stimulus reconstruction approach thus
suffers more from the channel reduction and is completely
outperformed by the FB-CSP method, which is another ad-
vantage of the newly proposed method.

We conclude that decoding the directional focus of attention
with the FB-CSP method using a reduced set of channels close
to the ear could be possible, but that there is more research
required to further validate this approach.

F. Performance on very short decision window lengths (< 1 s)

Fig. 9 shows the performance of the FB-CSP method on
Dataset I (binary classification) for 64 channels and the
channels close to the ear (see Section IV-E) for decision
window lengths below 1 s. Below 1 s, the accuracy further
degrades, with a limited loss of ≈ 5.5% accuracy on 31.25ms
decision windows and ≈ 8.5% on 15.63ms decision windows
compared to 1 s decision windows. As a result, for both
setups, there still is an acceptable performance when taking
quasi-instantaneous decisions, resulting in a median MESD of
76.5ms (64 channels) and 195.0ms (ear channels) over all
subjects. Note that caution is needed when interpreting these
MESD values, as on such short decision window lengths, the
independence assumption of the Markov model underlying
the MESD metric is gravely violated due to the significant
autocorrelation values of EEG signals below 1 s lags. The
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Fig. 9: The performance curves (mean ± standard error of the mean) of
the FB-CSP method degrade below 1 s decision window lengths, while
demonstrating acceptable performance even for quasi-instantaneous decisions
(Dataset I, binary classification).

actual time to achieve a sufficiently stable switch may be
slightly higher than the one predicted by the model behind
the MESD metric.

While it may seem surprising that the method can still de-
code the direction of attention quasi-instantaneously (< 32ms)
with an accuracy that is better than chance, we note that
CSP only exploits spatial information (differences between
channels) rather than temporal information. Integrating over
a longer time window only helps to achieve a better estimate
of the log-energies that are fed to LDA, which is the reason
behind the slight increase in performance for longer decision
windows (compared to instantaneous log-energy estimates).
In the case of CSP, the length of the decision window is
less important than in stimulus reconstruction approaches,
where temporal modulations in the speech envelopes are
exploited and where the decision window length directly
determines how much of this information is available for
discrimination between both speakers. Furthermore, in the case
of FB-CSP, the estimation errors on the log-energies (due to
quasi-instantaneous estimation) can be further compensated by
the LDA classifier by exploiting redundancy in the different
filter bands and CSP components to make a reliable decision.
Lastly, although the FB-CSP method makes a decision based
on a few samples, because of the filterbank on the EEG,
these samples are also the result of a weighted integration of
previous samples. This means that effectively more samples
than the number of samples in the decision window are used.

G. CSP classification on an unseen subject

In the preceding experiments, the FB-CSP filters and LDA
classifiers are trained subject-specifically. Here, we test the
viability of the subject-independent approach of Section II-D,
to improve the practical applicability of this method in neuro-
steered hearing devices. The same (FB-)CSP classification
pipeline (Fig. 1) and design choices (Section III-B) as before
are used, but now tested on Dataset I (binary classification) in
a leave-one-subject-out manner. Per test subject, the (FB-)CSP
filters and LDA classifier are trained on the 15 other subjects.
Without using any of the adaptions from Section II-D, the
subject-independent FB-CSP method (SI-FB-CSP) exhibits a
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Fig. 10: (a) Using a bias update (SI-FB-CSP-bias-update) and only one
frequency band (SI-CSP-bias-update) in the subject-independent CSP classi-
fication method on Dataset I (binary classification) results in a substantial
increase of performance over the baseline (SI-FB-CSP) (mean± standard
error of the mean). (b) The median MESD of the subject-independent CSP
classifier (SI-CSP-bias-update) is very close to the one of the subject-specific
FB-CSP classifier (SS-FB-CSP). There is, however, a larger spread, with more
negatively (higher) outlying MESD values. Note that when the MESD of a
subject is not connected to the corresponding MESD, it corresponds to an
outlier value of the other method.

large drop in performance in comparison with the subject-
specific FB-CSP method (SS-FB-CSP) (see Fig. 10a).

Updating the bias as in Section II-D results in a substantial
increase of performance of ≈ 4% (SI-FB-CSP-bias-update).
The second adaptation reduces the FB-CSP method to a CSP
method by using a single frequency band (the β-band: 12-
30Hz, B = 1), which was experimentally determined (see
Section IV-H). Using this CSP method in combination with
a bias update of the LDA classifier results in another increase
of accuracy (Fig. 10a; SI-CSP-bias-update).
The best subject-independent CSP classifier, with a bias update
and only one frequency band (SI-CSP-bias-update), is com-
pared with the subject-specific FB-CSP classifier (SS-FB-CSP)
in Fig. 10a and Fig. 10b. Note that using a single frequency
band for the subject-specific method (SS-CSP) results here
in a ≈ 2% decrease in accuracy over all decision window
lengths. From the MESD, we can see that the subject-
independent method quite nicely approximates the perfor-
mance of the subject-specific method. For two subjects, the
subject-independent method even performs better than the
subject-specific FB-CSP method. However, there still is a sig-
nificant difference (Wilcoxon signed-rank test: W = 127, n =
16, p = 0.0023). Furthermore, from Fig. 10b, it can be seen
that the subject-independent method has a larger spread, with
more negative outlier values.

We conclude that the subject-independent CSP classification
on average approximates the performance of a subject-specific
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FB-CSP classifier in terms of MESD, but that there is no guar-
antee that it will work on every subject. This slightly worse
performance is, however, traded for practical applicability, as
no a priori calibration session per user is required.

H. Decoding mechanisms

Given that it is possible to decode the directional focus of
attention with CSPs, it is relevant to get a handle on what
drives the decoding. To investigate which frequency bands are
most important, the subject-independent FB-CSP pipeline is
trained on all subjects with B = 4 filter bands, corresponding
to the main EEG frequency bands (1 − 4Hz (δ), 4 − 8Hz
(θ), 8− 12Hz (α), and 12− 30Hz (β)). The mean leave-one-
subject-out accuracy over all subjects using a 60 s decision
window length is 79.7%4. To assess the importance of each
band, the K = 6 energies related to each band are left out
(while keeping all others), leading to a decrease in accuracy
to 79.0% for the δ-band, 79.3% for θ-band, 79.0% for the
α-band, and 73.2% for the β-band. This indicates that the β-
band is the most important band, motivating the choice of this
band in Section IV-G. Similar conclusions have been drawn
in [19], [34]. Furthermore, the performance does not degrade
over time when the attention is sustained (see Supplementary
Material), which has been reported in the context of α-power
lateralization [17].

Fig. 11 shows the spatial activations of the β-band CSP
filters. These topographic maps show activations mainly above
the fronto-temporal cortex, consistent with the β-band activity
found in [19], [34]. However, caution is needed when interpret-
ing these spatial maps: the CSP filters implement a so-called
‘backward’ decoding model, which could implicitly also per-
form suppression of non-related EEG activity and artifacts, and
can thus result in misleading interpretations [35]. To make the
spatial maps as interpretable as possible, eye (blink) artifacts
have been removed with ICA and muscle artifacts have been
removed with CCA [36], making it impossible for the CSP
filters to reconstruct and exploit them. Note that because of
the artifact removal, the spatial filters shown in Fig. 11 do not
correspond to the ones applied in the experiments. We merely
try to highlight the neural underpinnings of the spatial filters
by removing artifact-related activity before computing the CSP
filters. As such, the topographic plots are not affected by the
artifact removal mechanism that would normally be present
implicitly in the CSP filters themselves (i.e., if such an implicit
artifact removal would help in maximizing the discrimination
between the classes). We reiterate that (linear) artifact removal
is unnecessary in the experiments, as the CSP filters can deal
with artifacts. Furthermore, the subject-specific performance
on 60 s windows, using only the β-band, with and without
mentioned artifact removal is very similar (77.2% vs 79.0%
respectively), which indicates that the artifacts are not harming
nor driving the CSP-based decoder.

Whether the CSPs exploit neural information or some cor-
related artifact signal (eye artifacts, EMG, . . . ) is impossible
to determine. Intuitively, two specific types of artifact signals
could be potentially exploited by the CSPs: eye artifacts

4As the data of the subject under test is used in the CSP training (but not
in the LDA training), this accuracy is slightly higher than in Fig. 10.
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Fig. 11: The topographic plots of the six spatial β-band CSP filters, computed
on all data of all subjects of Dataset I, show mainly fronto-temporal activity.
The filters of the first row maximize the output energy when left is attended,
while those in the second row maximize the output energy when right is
attended. The columns correspond to different RMOEs.

(e.g., lateral movements) and EMG activity (especially subtle
directive ear movements [37]). However, there are several
indications that the CSP filters do not exploit these effects
and indeed focus mainly on neural activity.

It is very unlikely that the CSPs exploit eye artifacts, as they
are mostly contained in the δ- and θ-band, whereas the CSP
filters focus on β-band activity. Secondly, the explicit removal
of the eye blinks using ICA does not affect the performance
(80.0% on 60 s decision windows). Furthermore, the decoding
also works well when the competing speakers are located at
the same side of the head (Section IV-C) and even when the
subjects are asked to fixate on a cross (tested on the dataset
of [38], results not shown).

As ear movements spectrally (β- and γ-band) overlap with
the information used by the CSPs, it is more difficult to
exclude the exploitation of subtle ear movements [37]. There
are, however, two counterindications. Firstly, the approach
also works for speakers located at the same side of the head
(Section IV-C). Secondly, when using only the 38 most central
electrodes (out of the 64 channels) furthest away from the ears
(see the orange electrodes in Fig. 7) and the β-band activity,
we still obtain a subject-specific accuracy (on Dataset I) of
74.1% on 60 s windows. This at least shows that the decoding
still works when only using the central channels, and thus most
probably while not being able to pick up ear muscle activity.
Furthermore, the topographic plots in Fig. 11 show that the
CSP filters also exploit channels that are rather far away from
the ears, even when the channels close to the ears are included
in the data-driven design.

V. CONCLUSION

We have shown that a (filterbank) common spatial patterns
classification method is capable of decoding the directional
focus of attention, solely based on the EEG. An inherent
limitation of this approach is that it requires the competing
speakers to be spatially separated. Furthermore, this spatial
separation needs to be perceived by the user, which is more
difficult for certain hearing impaired populations.

The proposed method has shown to not only outperform
the classical stimulus reconstruction approach for auditory
attention decoding in a two-speaker situation but does also
not perform worse than a computationally more complex
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convolutional neural network approach that performs the same
task [19]. It achieves practically viable MESDs below 4 s,
which has not been achieved by any other AAD method
so far [2]. Furthermore, the proposed method has several
important advantages, which are important for practical use
in neuro-steered hearing device applications:

1) the FB-CSP method does not require clean speech
envelopes (in contrast to the traditional stimulus recon-
struction approach), such that the extra (error-prone)
speech separation step for AAD can be avoided,

2) the performance barely decreases for short decision win-
dow lengths and still achieves acceptable performance
for quasi-instantaneous decisions, potentially resulting
in very fast and robust switching between speakers,

3) the method still works using a limited set of EEG
channels above the ears,

4) the method is capable of discriminating between differ-
ent angular speaker positions,

5) the method can be employed within a multi-condition or
multiclass strategy to handle multiple speaker positions
at the same time,

6) the method can, provided minor updates, be used in a
subject-independent way, trading a minimum of perfor-
mance for practical applicability.

We believe that these assets make the FB-CSP method an
excellent candidate and a major step forward towards practical
neuro-steered hearing devices.
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Fast EEG-based decoding of the directional focus
of auditory attention using common spatial patterns:

Supplementary material
Simon Geirnaert, Tom Francart, and Alexander Bertrand, Senior Member, IEEE

In the supplementary material, related to the paper Fast EEG-
based decoding of the directional focus of auditory attention
using common spatial patterns, we investigate the AAD accu-
racy as a function of time during sustained attention.

A. Decoding the directional focus during sustained attention

To investigate the AAD accuracy as a function of time during
sustained attention, we use the leave-one-story+speaker-out
cross-validation of Section IV-B in the paper on Dataset
I, allowing to leave out full continuous recordings. It is
important to verify whether decoding the directional focus of
attention is possible during the full duration of a continuous
recording, while the subject sustains its attention towards a
particular speaker/direction. If the AAD accuracy degrades
over time, this means the FB-CSP method only exploits brain
lateralization patterns when the subject initially focuses its
attention, which has been reported in the context of α-power
lateralization [1].

Fig. 1 shows the averaged performance over continuous
trials and subjects as a function of time. As Dataset I contains
6-minute continuous recordings (here referred to as trials) of
EEG with sustained attention, the AAD accuracy is shown
per 1 s sliding decision window (no overlap) over these trials.
The mean accuracy, over all decisions, 6-minute trials, and
subjects, is equal to 80.0% and is the same as the accuracy on
the 1 s-point in Fig. 4a in the paper. Furthermore, there is no
apparent decrease in performance over time, on the contrary,
the accuracy seems to slightly increase in the first minute,
whereafter the accuracy remains constant. This confirms that
the FB-CSP method is capable of decoding the directional
focus of attention when the attention is sustained, furthermore,
with a similar accuracy as when using random cross-validation
(see Fig. 3a).
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Fig. 1: The performance (mean accuracy ± standard error of the mean over
subjects and different 6-minute trials; Dataset I) does not degrade as a function
of time when the attention is sustained. A sliding window of 1 s is used.
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