Expected Switching Time: a Markov Chain Based Performance Metric to Evaluate Auditory Attention Decoding Algorithms

SITB 2019

Simon Geirnaert, Tom Francart, and Alexander Bertrand

Hearing aids increase quality of life of the hearing impaired

Current hearing aids:

- ✓ contain well-performing noise suppression algorithms (e.g., MWF)
- × but lack information on the targeted speaker in a 'cocktail party' scenario

Neuro-steered hearing prostheses are the future

The framework of AAD algorithms

AAD = auditory attention detection

The $p(\tau)$ -performance curves of AAD algorithms

However, AAD algorithms are evaluated in literature in a non-standardized fashion

1 Multiple decision window lengths and accuracies represent the performance ...

However, AAD algorithms are evaluated in literature in a non-standardized fashion

- 1 Multiple decision window lengths and accuracies represent the performance . . .
- 2 ... which leads to potential inconclusiveness

However, AAD algorithms are evaluated in literature in a non-standardized fashion

- 1 Multiple decision window lengths and accuracies represent the performance . . .
- 2 ... which leads to potential inconclusiveness
- 3 Different choice of decision window length obstructs fair comparison

(O'Sullivan et al., 2014), 60 s

(Das et al., 2019), 20 s

Fig. 2: Mean (bars) and individual subject (circles) detection accurations for each of the different envelope extraction methods for a trial length of 30s. The dotted black line at 57% indicates the subject specific detection accuracy which is only 5% likely to be surpassed by channee, based on a binomial distribution (success rate = 0.5, number of trials = 144).

In search of a suitable performance metric: the requirements

A performance metric for AAD algorithms should be:

- 1 single-number (allows for ranking, statistics, ...)
- 2 interpretable
- 3 combining accuracy and decision time
- 4 independent of evaluated decision window lengths which motivates the design of a new metric: the

expected switching time (EST)

Modeling an adaptive gain control system as a Markov chain is crucial

Known parameters from the AAD algorithm: p, τ Free design parameter: N (smoothness vs switching speed)

The design of the expected switching time consists of several subproblems

Expected switching time: definition in words

The expected switching time (EST) is the expected time required to reach the P_0 -confidence interval, containing the comfortable level c, after an attention switch, in an optimized Markov chain as a model for an adaptive gain control system in a neuro-steered hearing prosthesis.

The design of the expected switching time consists of several subproblems

The *P*₀-confidence interval of the Markov chain model

The $P_0\mbox{-}{\rm confidence}$ interval can be found by searching for the largest \bar{k} such that:

$$\sum_{j=\bar{k}}^{N} \pi(j) \ge P_0 \Leftrightarrow \bar{k} = \left\lfloor \frac{\log\left(r^N(1-P_0) + P_0\right)}{\log(r)} + 1 \right\rfloor,$$

using

$$r=\frac{p}{1-p}$$
 and steady-state distribution $\pi(i)=\frac{r-1}{r^N-1}r^{i-1}$

The *P*₀-confidence interval of the Markov chain model

The P_0 -confidence interval

$$[\bar{x},1] = \left[\frac{\bar{k}-1}{N-1},1\right],$$

with

$$\bar{k} = \left\lfloor \frac{\log\left(r^N(1-P_0) + P_0\right)}{\log(r)} + 1 \right\rfloor,$$

Example: the $90\%\mbox{-}{\rm confidence}$ interval of this Markov chain

Given (τ, p) -performance, two goals:

- 1 Optimize free design parameter ${\cal N}$
- 2 Interpret model in hearing aid context

result in two design criteria:

- 1 $\bar{x} \in [c,1],$ with c a predefined desired lower bound of the $P_0\text{-confidence}$ interval
- 2 $N \ge N_{\min}$: obtain smooth transitions in the gain adaptation

The transit time: the expected time needed to arrive in target state \bar{k} , starting from *any* initial state $i < \bar{k}$

Decision window length [s]

The transit time: the expected time needed to arrive in target state \bar{k} , starting from *any* initial state $i < \bar{k}$

An attention switch

An attention switch is defined as the transition from any initial state $i < \bar{k}$ outside the P_0 -confidence interval to lower bound \bar{k} .

12 / 17

The transit time: the expected time needed to arrive in target state \bar{k} , starting from *any* initial state $i < \bar{k}$

An attention switch

An attention switch is defined as the transition from any initial state $i < \bar{k}$ outside the P_0 -confidence interval to lower bound \bar{k} .

We call the associated switching time the transit time:

$$\begin{split} T(p(\tau),\tau,N) &= \tau \mathbb{E}\{s|i \to \bar{k}, \forall \, i < \bar{k}\} = \tau \sum_{s=0}^{+\infty} s P(s|i \to \bar{k}, \forall \, i < \bar{k}) \\ &= \tau \frac{r^{\bar{k}+1} - r^{\bar{k}}}{r^{\bar{k}} - r} \sum_{i=1}^{\bar{k}-1} r^{-i} h_{\bar{k}}(i), \end{split}$$

with mean hitting time $h_j(i) = \mathbb{E}\{s|i \rightarrow j\} = \frac{j-i}{2p-1} + \frac{p(r^{-j}-r^{-i})}{(2p-1)^2}, \forall i \leq j$

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?

1 Construct the $p(\tau)$ -performance curve via linear interpolation

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?

1 Construct the $p(\tau)$ -performance curve via linear interpolation

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?

- 1 Construct the $p(\tau)$ -performance curve via linear interpolation
- 2 Sample the $p(\tau)$ -performance curve

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?

- 1 Construct the $p(\tau)$ -performance curve via linear interpolation
- 2 Sample the $p(\tau)$ -performance curve
- 3 Pick the working point with the lowest transit time

leads to the expected switching time

Bringing it all together: the expected switching time

Bringing it all together: the expected switching time

Expected switching time: full definition

The expected switching time (EST) is the expected time required to reach the P_0 -confidence interval¹, containing the comfortable level c, after an attention switch, in an optimized Markov chain as a model for an adaptive gain control system in a neuro-steered hearing prosthesis. It is the solution of the following optimization problem:

$$\begin{split} \mathsf{EST} &= \min_{N,\tau} \quad T(p(\tau),\tau,N) \\ &\text{s.t.} \quad \bar{x} \in [c,1] \\ &\quad N \geq N_{\mathsf{min}} \end{split}$$

where $T(p(\tau), \tau, N)$ is the transit time and $\bar{x} = \frac{\bar{k}-1}{N-1}$, with \bar{k} the lower bound of the P_0 -confidence interval.

The computation of the EST is easy given that $T(p(\tau),\tau,N)$ is monotonically nondecreasing with N

¹Starting from a stochastically defined initial state based on the steady-state distribution

The framework of AAD algorithms

The framework of AAD algorithms

Basic approach via MMSE: (O'Sullivan et al., 2014)

$$\min_{d_n(l)} E\{(s_{\mathsf{att}}(t) - \sum_{n=1}^N \sum_{l=0}^{L-1} d_n(l) x_n(t+l))^2\},\label{eq:eq:expansion}$$

with N = number of channels (64) and L = length integration window (250 ms). Vectorized solution:

$$\hat{\mathbf{d}} = \mathbf{R}_{xx}^{-1} \mathbf{r}_{xs_{\mathsf{att}}}$$

Averaging decoders vs autocorrelation matrices: what does the EST decide?

Averaging decoders vs autocorrelation matrices: what does the EST decide?

Averaging decoders vs autocorrelation matrices: what does the EST decide?

A paired, one-sided Wilcoxon signed rank test shows that averaging autocorrelation matrices > averaging decoders

Interested in using the EST metric? https://github.com/exporl/est-toolbox

Questions? Remarks? Thoughts? Ideas? simon.geirnaert@esat.kuleuven.be

$$\begin{array}{ll} \mathsf{EST} = & \min_{N,\tau} & T(p(\tau),\tau,N) \\ & \mathsf{s.t.} & \bar{x} \in [c,1] \\ & & N \geq N_{\mathsf{min}} \end{array}$$

Three parameters involved in the design constraints:

$$\begin{array}{ll} \mathsf{EST} = & \min_{N,\tau} & T(p(\tau),\tau,N) \\ & \mathsf{s.t.} & \bar{x} \in [c,1] \\ & & N \geq N_{\mathsf{min}} \end{array}$$

Three parameters involved in the design constraints:

• $N_{\min} = 5$

$$\begin{split} \mathsf{EST} = & \min_{N,\tau} \quad T(p(\tau),\tau,N) \\ & \mathsf{s.t.} \quad \bar{x} \in [c,1] \\ & N \geq N_{\mathsf{min}} \end{split}$$

Three parameters involved in the design constraints:

•
$$N_{\min} = 5$$

•
$$c = 0.65$$

$$\begin{array}{ll} \mathsf{EST} = & \min_{N,\tau} & T(p(\tau),\tau,N) \\ & \mathsf{s.t.} & \bar{x} \in [c,1] \\ & & N \geq N_{\mathsf{min}} \end{array}$$

Three parameters involved in the design constraints:

•
$$P_0 = 0.9$$

The EST in case dependent decisions due to overlapping decision windows

Independence condition in Markov chain is violated when there is overlap in decision windows.

Two questions:

- 1 What is the difference between EST_{dep} and theoretical EST?
- 2 Is the theoretical EST still a valid *relative* performance metric?

The EST in case dependent decisions due to overlapping decision windows

Independence condition in Markov chain is violated when there is overlap in decision windows.

Two questions:

- 1 What is the difference between EST_{dep} and theoretical EST? Acceptable
- 2 Is the theoretical EST still a valid *relative* performance metric?

The EST in case dependent decisions due to overlapping decision windows

Independence condition in Markov chain is violated when there is overlap in decision windows.

Two questions:

- 1 What is the difference between EST_{dep} and theoretical EST? Acceptable
- 2 Is the theoretical EST still a valid *relative* performance metric? Yes

Average consistency = 98.73%

The algorithm to compute the EST

Algorithm 1 Computation of the EST metric

Input: Evaluated points on the $p(\tau)$ -performance curve $(\tau_i, p_i), i \in \{1, ..., I\}$, the required number of interpolated samples K of the performance curve $p(\tau)$ and the hyperparameters: confidence interval P_0 , lower bound c and minimum number of states N_{\min} . The suggested default values are $K = 1000, P_0 = 0.9, c = 0.65$ and $N_{\min} = 5$ (see Section [III-A]). Output: EST

- 1: Construct K samples of the performance curve $p(\tau)$ by piecewise linear interpolating through evaluated points $(\tau_i, p_i), i \in \{1, \dots, I\}$
- 2: for each sampled τ do
- 3: Find \hat{N}_{τ} by going over the candidate values $N = N_{\min} + i$, with i = 0, 1, 2, ..., in this specific order, until the first value N is found that satisfies:

$$\frac{k-1}{N-1} \ge c$$
,
and $N \ge N_{\min}$,

with
$$\bar{k} = \left\lfloor \frac{\log(r^{N}(1-P_{0})+P_{0})}{\log(r)} + 1 \right\rfloor$$
 and $r = \frac{p(\tau)}{1-p(\tau)}$.
Given \hat{N}_{τ} , compute the transit time $T(p(\tau), \tau, \hat{N}_{\tau}) = \tau \frac{r^{k+1}-r^{k}}{r^{k}-r} \sum_{j=1}^{k-1} r^{-i}h_{\bar{k}}(i)$, with $h_{\bar{k}}(i) = \frac{\bar{k}-i}{2p-1} + \frac{p(r^{-\bar{k}}-r^{-i})}{(2p-1)^{2}}$

5: end for

4:

6: The EST is equal to the minimum transit time over all sampled 7:

$$EST = \min_{\tau} \quad T(p(\tau), \tau, \hat{N}_{\tau}).$$

Comparison between less interpretable ITR and EST

Information transfer rate (ITR $\left[\frac{\text{bit}}{\text{s}}\right]$) is defined as:

$$\mathsf{ITR} = \frac{1}{\tau} \left(\log_2 M + p \log_2 p + (1-p) \log_2 \frac{1-p}{M-1} \right),$$

with M = 2 here.

