Expected Switching Time: a Markov Chain Based Performance Metric to Evaluate Auditory Attention Decoding Algorithms

SITB 2019

Simon Geirnaert, Tom Francart, and Alexander Bertrand

Hearing aids increase quality of life of the hearing impaired

Current hearing aids:
\checkmark contain well-performing noise suppression algorithms (e.g., MWF)
X but lack information on the targeted speaker in a 'cocktail party' scenario

Neuro-steered hearing prostheses are the future

The framework of AAD algorithms

The $p(\tau)$-performance curves of AAD algorithms

However, AAD algorithms are evaluated in literature in a non-standardized fashion

1 Multiple decision window lengths and accuracies represent the performance...

However, AAD algorithms are evaluated in literature in a non-standardized fashion

1 Multiple decision window lengths and accuracies represent the performance ...
2 ... which leads to potential inconclusiveness

However, AAD algorithms are evaluated in literature in a non-standardized fashion

1 Multiple decision window lengths and accuracies represent the performance
2 ... which leads to potential inconclusiveness
3 Different choice of decision window length obstructs fair comparison
 mean decoding accuracy per subject, also indicated by colored points. In the plot, comparisons between methods are done using

Fig. 2: Mean (bars) and individual subject (circles) detection accuracies for each of the different envelope extraction methods for a trial length of 30 s . The dotted black line at 57% indicates the subjectspecific detection accuracy which is only 5% likely to be surpassed by chance, based on a binomial distribution (success rate $=0.5$. number of trials $=144$).
(Biesmans et al., 2017), 30 s

In search of a suitable performance metric: the requirements

A performance metric for AAD algorithms should be:
1 single-number (allows for ranking, statistics, ...)
2 interpretable
3 combining accuracy and decision time
4 independent of evaluated decision window lengths which motivates the design of a new metric: the
expected switching time (EST)

Modeling an adaptive gain control system as a Markov chain is crucial

hidden: τ

Known parameters from the AAD algorithm: p, τ
Free design parameter: N (smoothness vs switching speed)

The Markov chain as adaptive gain control system: an example

The Markov chain as adaptive gain control system: an example

The Markov chain as adaptive gain control system: an example

The Markov chain as adaptive gain control system: an example

The Markov chain as adaptive gain control system: an example

The Markov chain as adaptive gain control system: an example

AAD algorithm
with $p=80 \%$
for 5 s windows


```
Attention switch 1 }->
    Path
    1,2,3
Switching time
```


The Markov chain as adaptive gain control system: an example

AAD algorithm
with $p=80 \%$
for 5 s windows


```
Attention switch 1 }->
Path
    1,2,3,2
Switching time
```


The Markov chain as adaptive gain control system: an example

AAD algorithm
with $p=80 \%$
for 5 s windows

$x=0$
Unattended speaker
Target direction

The Markov chain as adaptive gain control system: an example

AAD algorithm
with $p=80 \%$
for 5 s windows

$$
\begin{array}{cc}
\text { Attention switch } & 1 \rightarrow 4 \\
\text { Path } & 1,2,3,2,3 \\
\text { Switching time } &
\end{array}
$$

The Markov chain as adaptive gain control system: an example

AAD algorithm with $p=80 \%$
for 5 s windows

$$
\begin{array}{cc}
\text { Attention switch } & 1 \rightarrow 4 \\
\text { Path } & 1,2,3,2,3 \\
\text { Switching time } &
\end{array}
$$

The Markov chain as adaptive gain control system: an example

The design of the expected switching time consists of several subproblems

Expected switching time: definition in words
The expected switching time (EST) is the expected time required to reach the P_{0}-confidence interval, containing the comfortable level c, after an attention switch, in an optimized Markov chain as a model for an adaptive gain control system in a neuro-steered hearing prosthesis.

The design of the expected switching time consists of several subproblems

The P_{0}-confidence interval of the Markov chain model

The P_{0}-confidence interval can be found by searching for the largest \bar{k} such that:

$$
\sum_{j=\bar{k}}^{N} \pi(j) \geq P_{0} \Leftrightarrow \bar{k}=\left\lfloor\frac{\log \left(r^{N}\left(1-P_{0}\right)+P_{0}\right)}{\log (r)}+1\right\rfloor,
$$

using

$$
r=\frac{p}{1-p} \text { and steady-state distribution } \pi(i)=\frac{r-1}{r^{N}-1} r^{i-1}
$$

The P_{0}-confidence interval of the Markov chain model

The P_{0}-confidence interval

$$
[\bar{x}, 1]=\left[\frac{\bar{k}-1}{N-1}, 1\right],
$$

with

$$
\bar{k}=\left\lfloor\frac{\log \left(r^{N}\left(1-P_{0}\right)+P_{0}\right)}{\log (r)}+1\right\rfloor,
$$

Example: the 90%-confidence interval of this Markov chain

is $[0.75,1](\bar{k}=4)$

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

Given (τ, p)-performance, two goals:
1 Optimize free design parameter N
2 Interpret model in hearing aid context
result in two design criteria:
$1 \bar{x} \in[c, 1]$, with c a predefined desired lower bound of the P_{0}-confidence interval
$2 N \geq N_{\text {min }}$: obtain smooth transitions in the gain adaptation

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

Design constraints on the Markov chain: optimizing free design parameter N

The transit time: the expected time needed to arrive in target state \bar{k}, starting from any initial state $i<\bar{k}$

The transit time: the expected time needed to arrive in target state \bar{k}, starting from any initial state $i<\bar{k}$

An attention switch

An attention switch is defined as the transition from any initial state $i<\bar{k}$ outside the P_{0}-confidence interval to lower bound \bar{k}.

The transit time: the expected time needed to arrive in target state \bar{k}, starting from any initial state $i<\bar{k}$

An attention switch

An attention switch is defined as the transition from any initial state $i<\bar{k}$ outside the P_{0}-confidence interval to lower bound \bar{k}.

We call the associated switching time the transit time:

$$
\begin{aligned}
T(p(\tau), \tau, N) & =\tau \mathbb{E}\{s \mid i \rightarrow \bar{k}, \forall i<\bar{k}\}=\tau \sum_{s=0}^{+\infty} s P(s \mid i \rightarrow \bar{k}, \forall i<\bar{k}) \\
& =\tau \frac{r^{\bar{k}+1}-r^{\bar{k}}}{r^{\bar{k}}-r} \sum_{i=1}^{\bar{k}-1} r^{-i} h_{\bar{k}}(i)
\end{aligned}
$$

with mean hitting time $h_{j}(i)=\mathbb{E}\{s \mid i \rightarrow j\}=\frac{j-i}{2 p-1}+\frac{p\left(r^{-j}-r^{-i}\right)}{(2 p-1)^{2}}, \forall i \leq j$

Optimizing the transit time over the performance curve results in the EST (bis)

Optimizing the transit time over the performance curve results in the EST (bis)

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?

Optimizing the transit time over the performance curve results in the EST (bis)
? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?
1 Construct the $p(\tau)$-performance curve via linear interpolation

Optimizing the transit time over the performance curve results in the EST (bis)
? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?
1 Construct the $p(\tau)$-performance curve via linear interpolation

Optimizing the transit time over the performance curve results in the EST (bis)

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?

1 Construct the $p(\tau)$-performance curve via linear interpolation
2 Sample the $p(\tau)$-performance curve

Optimizing the transit time over the performance curve results in the EST (bis)

? At which accuracy p and decision window length τ should the Markov chain be optimized and the transit time computed?
1 Construct the $p(\tau)$-performance curve via linear interpolation
2 Sample the $p(\tau)$-performance curve
3 Pick the working point with the lowest transit time leads to the expected switching time

Bringing it all together: the expected switching time

Bringing it all together: the expected switching time

Expected switching time: full definition

The expected switching time (EST) is the expected time required to reach the P_{0}-confidence interval ${ }^{1}$, containing the comfortable level c, after an attention switch, in an optimized Markov chain as a model for an adaptive gain control system in a neuro-steered hearing prosthesis. It is the solution of the following optimization problem:

$$
\begin{array}{rll}
\mathrm{EST}= & \min _{N, \tau} & T(p(\tau), \tau, N) \\
\text { s.t. } & \bar{x} \in[c, 1] \\
& N \geq N_{\min }
\end{array}
$$

where $T(p(\tau), \tau, N)$ is the transit time and $\bar{x}=\frac{\bar{k}-1}{N-1}$, with \bar{k} the lower bound of the P_{0}-confidence interval.

The computation of the EST is easy given that $T(p(\tau), \tau, N)$ is
monotonically nondecreasing with N

The framework of AAD algorithms

The framework of AAD algorithms

MMSE as example of backward AAD decoder

Basic approach via MMSE: (o'suliven et al, 2014)

$$
\min _{d_{n}(l)} E\left\{\left(s_{\text {att }}(t)-\sum_{n=1}^{N} \sum_{l=0}^{L-1} d_{n}(l) x_{n}(t+l)\right)^{2}\right\}
$$

with $N=$ number of channels (64) and $L=$ length integration window (250 ms). Vectorized solution:

$$
\hat{\mathbf{d}}=\mathbf{R}_{x x}^{-1} \mathbf{r}_{x s_{\mathrm{att}}}
$$

MMSE as example of backward AAD decoder

trials of data

MMSE as example of backward AAD decoder

MMSE as example of backward AAD decoder

MMSE as example of backward AAD decoder

Averaging decoders vs autocorrelation matrices: what does the EST decide?

Averaging decoders vs autocorrelation matrices: what does the EST decide?

Averaging decoders vs autocorrelation matrices: what does the EST decide?

Averaging decoders

Averaging
autocorrelation
matrices

A paired, one-sided Wilcoxon signed rank test shows that averaging autocorrelation matrices > averaging decoders

Interested in using the EST metric?

https://github.com/exporl/est-toolbox

Questions? Remarks? Thoughts? Ideas?

simon.geirnaert@esat.kuleuven.be

Hyperparameter choice: $N_{\text {min }}, P_{0}$ and c

$$
\begin{array}{rll}
\mathrm{EST}=\min _{N, \tau} & T(p(\tau), \tau, N) \\
& \text { s.t. } & \bar{x} \in[c, 1] \\
& N \geq N_{\min }
\end{array}
$$

Three parameters involved in the design constraints:

Hyperparameter choice: $N_{\text {min }}, P_{0}$ and c

$$
\begin{array}{rll}
\mathrm{EST}= & \min _{N, \tau} & T(p(\tau), \tau, N) \\
& \text { s.t. } & \bar{x} \in[c, 1] \\
& N \geq N_{\min }
\end{array}
$$

Three parameters involved in the design constraints:

- $N_{\text {min }}=5$

Hyperparameter choice: $N_{\min }, P_{0}$ and c

$$
\begin{array}{ll}
\mathrm{EST}=\min _{N, \tau} & T(p(\tau), \tau, N) \\
\text { s.t. } & \bar{x} \in[c, 1] \\
& N \geq N_{\min }
\end{array}
$$

Three parameters involved in the design constraints:

- $N_{\text {min }}=5$
- $c=0.65$

Hyperparameter choice: $N_{\text {min }}, P_{0}$ and c

$$
\begin{array}{rll}
\mathrm{EST}=\min _{N, \tau} & T(p(\tau), \tau, N) \\
\text { s.t. } & \bar{x} \in[c, 1] \\
& N \geq N_{\min }
\end{array}
$$

Three parameters involved in the design constraints:

- $N_{\min }=5$
- $c=0.65$
- $P_{0}=0.9$

The EST in case dependent decisions due to overlapping decision windows

Independence condition in Markov chain is violated when there is overlap in decision windows.
Two questions:
1 What is the difference between $\mathrm{EST}_{\text {dep }}$ and theoretical EST?
2 Is the theoretical EST still a valid relative performance metric?

The EST in case dependent decisions due to overlapping decision windows

Independence condition in Markov chain is violated when there is overlap in decision windows.
Two questions:
1 What is the difference between EST ${ }_{\text {dep }}$ and theoretical EST? Acceptable
2 Is the theoretical EST still a valid relative performance metric?

The EST in case dependent decisions due to overlapping decision windows

Independence condition in Markov chain is violated when there is overlap in decision windows.
Two questions:
1 What is the difference between EST ${ }_{\text {dep }}$ and theoretical EST? Acceptable
2 Is the theoretical EST still a valid relative performance metric? Yes

Average consistency $=98.73 \%$

The algorithm to compute the EST

```
Algorithm 1 Computation of the EST metric
Input: Evaluated points on the \(p(\tau)\)-performance curve \(\left(\tau_{i}, p_{i}\right), i \in\{1, \ldots, I\}\), the required number of interpolated samples
\(K\) of the performance curve \(p(\tau)\) and the hyperparameters: confidence interval \(P_{0}\), lower bound \(c\) and minimum number of
states \(N_{\min }\). The suggested default values are \(K=1000, P_{0}=0.9, c=0.65\) and \(N_{\text {min }}=5\) (see Section III-A).
```


Output: EST

1: Construct K samples of the performance curve $p(\tau)$ by piecewise linear interpolating through evaluated points $\left(\tau_{i}, p_{i}\right), i \in$
$\{1, \ldots, I\}$
2: for each sampled τ do

3: Find N_{τ} by going over the candidate values $N=N_{\min }+i$, with $i=0,1,2, \ldots$, in this specific order, until the first value N is found that satisfies:

$$
\begin{aligned}
& \frac{\bar{k}-1}{N-1} \geq c, \\
& \text { and } N \geq N_{\min },
\end{aligned}
$$

with $\bar{k}=\left\lfloor\frac{\log \left(r^{N}\left(1-P_{0}\right)+P_{0}\right)}{\log (r)}+1\right\rfloor$ and $r=\frac{p(\tau)}{1-p(\tau)}$.
4: Given \hat{N}_{τ}, compute the transit time $T\left(p(\tau), \tau, \hat{N}_{\tau}\right)=\tau \frac{r^{k+1}-r^{k}}{r^{k}-r} \sum_{i=1}^{\bar{k}-1} r^{-i} h_{\bar{k}}(i)$, with $h_{\bar{k}}(i)=\frac{\bar{k}-i}{2 p-1}+\frac{p\left(r^{-k}-r^{-i}\right)}{(2 p-1)^{2}}$.
5: end for
6: The EST is equal to the minimum transit time over all sampled τ :

$$
\mathbf{E S T}=\min _{\tau} T\left(p(\tau), \tau, \hat{N}_{\tau}\right)
$$

Comparison between less interpretable ITR and EST

Information transfer rate (ITR $\left[\frac{b i t}{s}\right]$) is defined as:

$$
\mathrm{ITR}=\frac{1}{\tau}\left(\log _{2} M+p \log _{2} p+(1-p) \log _{2} \frac{1-p}{M-1}\right)
$$

with $M=2$ here.

