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ABSTRACT

Current hearing aids have difficulties focusing on the correct speaker
in complex environments where multiple people are talking simulta-
neously. This is because hearing aids do not know to which speaker
the user aims to listen. A promising solution is to use so-called
auditory attention decoding (AAD) algorithms, which infer the at-
tended speaker based on brain activity recorded with, e.g., elec-
troencephalography (EEG). AAD models decode on a window-to-
window basis to which person a subject wishes to listen. However,
only limited research has been done on how these AAD decisions
can be converted into a gain control system that controls the volume
of each competing speaker in a hearing aid. Existing gain control
systems are either difficult to tune, unstable and/or not designed for
use in situations with more than two competing speakers. We there-
fore propose a novel general purpose gain control system that can
be easily used on any AAD model and in scenarios with an arbitrary
number of speakers. We demonstrate that the gain control system is
stable, even for AAD algorithms with very low accuracies, and even
in scenarios with more than 2 speakers.

Index Terms— Auditory attention decoding, unsupervised
learning, electroencephalography, neuro-steered hearing devices

1. INTRODUCTION

Despite recent advancements in beamforming and source separation
techniques, hearing aids still struggle in so-called cocktail party en-
vironments where multiple speakers are talking simultaneously. A
main culprit is that it is difficult to accurately detect to which speaker
a person wishes to listen, and thus on which speaker the hearing aid
should focus [1].

A promising solution is to directly decode from electroen-
cephalography (EEG) signals who the attended speaker is. This is
called (selective) Auditory Attention Decoding (AAD). Most AAD
algorithms use the fact that the brain tracks the envelope of attended
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speech more than the envelope of unattended speech to decode who
the attended speaker is [2–8]. Other AAD algorithms focus on,
e.g. decoding the location of the attended speaker [9, 10], or use
end-to-end decoding with neural networks [11].

In general, AAD algorithms cut the recorded EEG signal in
small windows and predict per window who the attended speaker
is. However, only a limited amount of research has focused on how
these decisions should be incorporated into a gain control system
that controls the volume (gain) of each speaker. A Bayesian state-
space model was proposed in [12] and adopted in [5, 13, 14]. While
this model achieves promising results, the vast number of unintuitive
hyperparameters makes it difficult to use in different AAD mod-
els or listening contexts. The Markov chain proposed in [15] is,
in contrast, designed to be plug-and-play and interpretable. It only
contains a single hyperparameter that directly controls the balance
between stability and speed. However, it is unable to take the de-
cision certainty of AAD models into account, making it unstable
when the AAD model is uncertain who the attended speaker is for
a prolonged amount of time. Furthermore, it is, to our knowledge,
either non-trivial [5, 12–14] or impossible [15] to directly use these
aforementioned gain control systems in situations with more than
two competing speakers.

We, therefore, propose a new gain control system that combines
the advantages of the two previous models and also works in situa-
tions with an arbitrary number of speakers. Similar to [15], it is de-
signed to be ’plug-and-play’ such that it can be used in combination
with any AAD model and it only requires a single hyperparameter
that directly controls the stability and speed of the gain control sys-
tem. Similar to [5, 12, 13], it is able to take the decision certainty of
the AAD model into account, ensuring that the speaker gains remain
stable when the AAD model is uncertain who the attended speaker
is. The model is also kept as simple as possible, to ensure its easy
usability. The gain control system is designed in Section 2 and eval-
uated in Section 3. We evaluate the gain control on data with both
two and three competing speakers.

2. GAIN CONTROL SYSTEM

The gain control system regulates the volume of each competing
speaker in a cocktail party. To achieve this, the gain control sys-
tem changes the volume of each speaker based on the probability
that this speaker is attended. However, most AAD algorithms do
not directly estimate this probability, but simply give a score to each
speaker, based on which binary decision can be made. Therefore,
we explain in Section 2.1 how the attention probability can be esti-
mated for each speaker. The actual gain control system is derived in
Section 2.2.



2.1. Attention probability estimation

AAD algorithms decode to which of S speakers a subject is attend-
ing from that subject’s EEG. In general, these algorithms cut the
EEG in non-overlapping windows and then compute for each win-
dow i a set of scores x(i) ∈ RS×1, which are related to the proba-
bility of each of the S speakers being attended or not.

We wish to compute the probability P (s = a|x(i)) that speaker
s is attended given the scores x(i). To do this, we assume that
the scores are independently drawn from either the attended normal
distribution N (µa, σa) if the corresponding speaker is attended or
the unattended normal distribution N (µu, σu) otherwise. µa/u and
σa/u are, respectively, the mean and the standard deviation of each
of the distributions. They can be estimated from the same training
data that is used to train the AAD decoders. This estimation can
even be unsupervised, as shown in [16] (e.g. for the AAD algo-
rithm used in Section 3.2.2). It is sufficient to determine these val-
ues in a 2-speaker paradigm (independent of S), as they are speaker-
independent parameters describing the attended class or unattended
class. Furthermore, we assume that each speaker is a priori equally
likely to be attended (i.e. P (s = a) = 1/S), and that only one
speaker can be attended at any point in time.

To shorten notation, we will further denote P (s = a|x(i)) as
ps(i). Using Bayes theorem, we can compute ps(i):

ps(i) =
P (x(i)|s = a)P (s = a)

P (x(i))
(1)

=
P (xs(i)|µa, σa)

∏
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∏
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√
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Note that the estimation of ps(i) in (2) can be replaced by any other,
more accurate estimation if available. This is especially relevant for
AAD algorithms that inherently estimate the probability of attention,
such as Bayesian models.

2.2. Gain control system design

The gain control system regulates the volume gain of each speaker
within a fixed interval [gmin, gmax] based on the set of probabilities
ps(i), s ∈ [1, . . . , S]. For ease of notation, we map the gain interval
onto the interval [0, 1], noting that a zero-gain does not necessarily
imply that the speaker becomes fully silent. At each time instance i,
the gain gs(i) of speaker s is updated with a step δs(i) as follows:

gs(i) =


0 if gs(i− 1) + δs(i) ≤ 0

1 if gs(i− 1) + δs(i) ≥ 1

gs(i− 1) + δs(i) otherwise.
(3)

The step δs(i) is determined according to the following set of rules:

• Proportional: The step δs(i) must be directly and linearly
proportional to the probability of attention ps(i).

• Unbiased: The linear relation between δs(i) and ps(i) must
be equal for all speakers s.

• Balanced: The sum of all steps
∑

s δs(i) = 0 at each time
instance i.

The last rule ensures that the gain control system can only amplify
one speaker by suppressing another speaker (until the gain reaches
the maximal or minimal level). To satisfy the first and second rules,
the steps must be of the form

δs(i) =
1

N
ps(i) + b, (4)

with N > 0 and b equal for all speakers. To ensure that the third
rule is also satisfied, and because

∑S
s=1 ps(i) = 1, we get:

S∑
s=1

δs(i) = 0 (5)

⇔ 1

N
+ Sb = 0 (6)

⇔b = − 1

SN
. (7)

By combining (4) and (7), we get:

δs(i) =
1

N
(ps(i)−

1

S
). (8)

The hyperparameter N directly controls the trade-off between the
speed and stability of the gain control system. A larger N creates
a more stable, but slower system and vice versa. The exact influ-
ence of N on the gain trajectory is further experimentally analysed
in Section 3.

Equation (8) is intuitive in the sense that the gain gs(i) of
speaker s only increases in volume when ps(i) > 1/S, i.e. when
the probability that this speaker is attended is larger than chance. On
average, the gain of the attended speaker increases with 1

N
(p̄a− 1

S
),

with p̄a the average estimated probability that the attended speaker
is attended. In other words, as long as the AAD algorithm performs
better than chance, the gain of the attended speaker will, on average,
increase. This is true irrespective of the number of speakers present.

When the gain system is unsure whether a certain speaker is at-
tended or unattended, their gain will hardly change. This avoids any
sudden (random) changes in the gain during periods of high uncer-
tainty, e.g. when the recorded subject has a lapse of attention or the
EEG is heavily contaminated with artifacts. This is in contrast to the
gain control systems proposed in [5, 14, 15].

3. EXPERIMENTS

To assess the behaviour of the gain control system, it is applied on the
output of the least-squares (LS) AAD algorithm proposed in [2, 3].
This framework was tested on two datasets: the publicly available 2-
speaker KUL dataset [17] and on pilot data of a novel dataset where
three conversations between two speakers are being held simultane-
ously (further called the conversations dataset).

3.1. Datasets

3.1.1. 2-speaker KUL dataset

In this public dataset, a 64-channel EEG signal of 16 normal hearing
Flemish speaking subjects is measured with a BioSemi ActiveTwo
system. The data consists of 8 trials of 6 minutes and 12 trials of
2 minutes each. In each trial, the subject must listen to one of two
competing speakers. The competing speakers are located at the left
and right side of the subject, and the side of the attended speaker
changes across trials. All speakers are male and narrate Flemish
stories. For more details, we refer to [3, 17].



3.1.2. Conversation dataset

This is a pilot dataset for a different study, containing 64-channel
EEG data from 13 normal hearing Flemish speaking subjects. The
data is collected with a BioSemi ActiveTwo system and a 10-20 elec-
trode lay-out. Per subject, 6 trials of 10 minutes each are recorded.
In each trial, the subject is listening to one of three conversations,
located left, right and in front of the subject. Each conversation is
held between two Flemish speakers in the form of a podcast. Each
speaker is represented by a loudspeaker, so there are six loudspeak-
ers in total.

The 6 trials are divided into 3 trials where the subject sustains
attention to a single conversation (once to the left, once to the front
and once to the right conversation) and 3 trials where the attention
switches after 5 minutes. The possible switches are from right to
front, from left to front, from right to left, and vice versa.

Important to note is that in this dataset, we decode the attended
conversation, rather than the attended speaker. There are thus three
classes to select from, not six.

3.2. Experiment protocol

3.2.1. Preprocessing

We extracted the envelopes of all speech signals using the gamma-
tone and power law framework from [3]. The EEG signals and the
envelopes are then bandpass filtered between 1Hz and 32Hz and
resampled to a 64Hz sample frequency. The EEG and envelopes are
then all cut in non-overlapping windows of 1 s (unless mentioned
otherwise) and classified by the LS AAD algorithm outlined in Sec-
tion 3.2.2.

3.2.2. Least-squares decoding

The LS AAD algorithm is exactly recreated from [3]. For each win-
dow, the attended envelope ea(t) is reconstructed from the EEG
signal M ∈ RT×C using a linear spatio-temporal LS filter D ∈
RNl×C , with T the length of a window, Nl the number of time lags
and C the number of channels:

ẽa(t) =

Nl−1∑
n=0

C∑
c=1

D(n, c)M(t+ n, c). (9)

The LS filter D is trained to minimise the square error

E
[
(ẽa(t)− ea(t))

2]
between the reconstructed envelope ẽa(t) and the attended envelope
ea(t). This training is done on all other trials using leave-one-trial-
out cross-validation.

The reconstructed envelope ẽa(t) is then correlated with the en-
velope of each speaker (or conversation for the conversation dataset),
and the per-speaker correlation coefficients are used as the entries of
x(i) in the gain control system from Section 2. The correlations are
expected to be higher for an attended speaker than for unattended
speakers.

3.2.3. Gain control protocol

The gain control system explained in Section 2 is used to transform
the set of correlations x(i) per window i into a sequence of relative
gains per speaker gs(i). To ensure that the results are comparable
between subjects and datasets, N is automatically tuned for each

subject independently, such that the gain control system is equally
stable for each subject (unless mentioned otherwise).

Similar to [15], the hyperparameter N in (8) is tuned by enforc-
ing that the gain of the attended speaker is higher than a comfort
level c = 0.65 for P0 = 80% of the time when the gain control
system is in steady state (i.e. when there was no recent switch in
attention). The N that satisfies the required comfort level as closely
as possible, is iteratively found by minimising (c − ĉ)2, with ĉ the
level above which the attended gain is for P0 = 80% of the time
given a certain N . This problem is solved for each subject using
the built-in Matlab R2021a nonlinear solver fsolve with the interior
point method and using leave-one-trial-out cross-validation. No at-
tention switches were present when tuning N to ensure that the gain
system is always in steady state.

The gain control system is then evaluated by empirically com-
puting the median switch duration (MSD). This is the median time
required after a switch for the attended speaker to reach the com-
fort level c, similar to the expected switch duration proposed in [15].
In contrast [15], the MSD is empirically determined by first comput-
ing the switch duration after every switch and then taking the median
switch duration per subject. If there are no switches present in a trial,
they are artificially produced at the center of the trial by switching
the correlations of the attended speaker with the correlations of an
unattended speaker.

3.3. Results and discussion

The median switch duration (MSD) of each subject is represented in
Figure 1. The median MSD over all subjects is 19 s in the 2-speaker
KUL dataset and 13 s in the conversation dataset. The difference in
switch duration is not statistically significant based on a Wilcoxon
rank sum test (p = 0.15). Remarkably, while the conversation data
set is a 3-class problem (versus a 2-class problem in the 2-speaker
KUL dataset), inevitably leading to lower decoding accuracies, we
cannot show a difference in switch duration. This observation can
be explained by looking at the average estimated probability that the
attended speaker is attended p̄a and its standard deviation, which is
p̄a = 52.09±10.05% for the KUL dataset and p̄a = 34.85±7.24%
for the conversations dataset. In both cases, the chance level (50%
and 33.33% respectively) is about 0.2 standard deviations away from
p̄a. Since the steps in the gain control are directly related to the
difference between the probability that a speaker is attended and the
chance level, the steps of the attended speaker in the gain control are,

0 20 40 60 80 100 120 140

2 speakers

3 conversations

Median switch duration [s]

Fig. 1. The median time between the moment a subject switches at-
tention and the moment the gain of the attended speaker is again
above comfort level (0.65) is 19s in the Das dataset and 13s in
the conversation dataset. The lighter colours represent the median
switch duration for each subject, whereas the darker blue and red
dot represent the median over all subjects. Smaller is better.
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Fig. 2. A representation of the gain sequence of subject 7 from the 2-speaker KUL dataset around the switch introduced between the second
and third trial. The two curves represent the gain of the left and right speaker across time. The subject attended the left speaker before and
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Fig. 3. There is a direct trade-off between the percentage of time that
the gain control system stays above the comfort level of c = 0.65
in steady state (higher is better) and the median time required until
the attended speaker passes above comfort level after an attention
switch (lower is better). This trade-off is also represented for the
gain control systems proposed in [15] on the 2-speaker KUL dataset.
The performance of the state space machine proposed in [14] is
only shown using the same hyperparameters as proposed in the pa-
per since the trade-off between stability and speed cannot be easily
tuned in this model. The solid line and dots represent the median and
the shaded area represents the interquartile range across subjects for
each dataset.

therefore, comparable. Note that the low values for p̄a are caused
by the short window lengths of 1 s, where the LS AAD algorithm
achieves very low accuracies [1–3].

As an example, the gain control system of Subject 7 (whose me-
dian switch duration is 22s) is shown in Figure 2. It is clearly visible
that the gain mostly stays above the comfort level c = 0.65 in steady
state. The gain of the attended speaker rises above the comfort level
20s after the attention switch.

The ideal trade-off between stability and switching speed is nat-
urally context-dependent. We therefore investigate the relation be-
tween the MSD and the percentage of time that the gain control sys-
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Fig. 4. The median time to switch from one speaker to another is
lower when the AAD algorithm uses many short windows, rather
than only a few long windows (lower is better). The shaded area
represents the interquartile range for each dataset.

tem is above comfort level P0 in a steady state. This is achieved
by varying the hyperparameter N in (8) between 0.1 and 5 and then
computing both the MSD and the percentage of time above comfort
level for each value of N . These resulting curves are then linearly
interpolated to enable comparisons between subjects. The median
and IQR of the interpolated results are shown in Figure 3. For both
datasets, the gain of the attended speaker rarely dips below the com-
fort level when an MSD over 40 s is allowed.

To compare with state-of-the-art gain control systems, the me-
dian percentage of time above comfort level and median MSD of the
gain control system achieved by the Markov chain proposed by Geir-
naert et al. in [15] and the state space machine proposed by Aroudi
et al. in [14] are also added in Figure 3. We used the hyperpa-
rameters that were suggested by the corresponding papers as we did
not find specific hyperparameter settings that substantially improved
results. The Markov chain [15] was tested using the correlations
obtained from non-overlapping 1 s windows and by varying the hy-
perparameter N between 0.1 and 5. Similar to [14], the state space
machine was tested using overlapping windows of 15 s shifted with



0.25 s since the machine was too unstable on shorter windows for
practical use. These two models were only tested on the 2-speaker
KUL dataset, since they were nor designed, nor easy to transform to
datasets with more than two competing speakers.

Until now, we only investigated the gain control system using 1 s
windows. In Figure 4, we demonstrate how the window length influ-
ences the MSD of the gain control system. Similar to the results in
[15], we observe that it is generally better to use short, low-accuracy
windows than long windows where AAD algorithms can classify the
attended speaker with much more certainty [1]. However, there is
no significant difference in the MSD of windows shorter than 10 s.
Note that the MSD can only be a multiple of the window length
since only non-overlapping windows were used. This explains the
large variance in MSD at larger window lengths.

4. CONCLUSION

We proposed and evaluated a new gain control system for auditory
attention decoding (AAD). The system is designed to work along
with any AAD model and in scenarios with an arbitrary number of
speakers. Furthermore, the gain control system is designed to be
simple in use with only a single hyperparameter that directly controls
the trade-off between the speed and the stability of the gain control
system.

The gain control system was evaluated on both a dataset with
two speakers and a pilot dataset with three conversations. Using the
least-squares AAD algorithm, it takes on average 19 s for the two
speaker dataset and 13 s for the dataset with three conversations to
switch attention from one person to another, given a reasonable level
of stability. Surprisingly, the gain control system achieved similar
results on both datasets, despite the fact that the decoding accuracy
is significantly different for both datasets.
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