Riemannian Geometry-Based Decoding of the Directional Focus of Auditory Attention Using EEG


Auditory attention decoding (AAD) algorithms decode the auditory attention from electroencephalography (EEG) signals that capture the listener’s neural activity. Such AAD methods are believed to be an important ingredient towards so-called neuro-steered assistive hearing devices. For example, traditional AAD decoders allow detecting to which of multiple speakers a listener is attending to by reconstructing the amplitude envelope of the attended speech signal from the EEG signals. Recently, an alternative paradigm to this stimulus reconstruction approach was proposed, in which the directional focus of auditory attention is determined instead, solely based on the EEG, using common spatial pattern filters (CSP). Here, we propose Riemannian geometry-based classification (RGC) as an alternative for this CSP approach, in which the covariance matrix of a new EEG segment is directly classified while taking its Riemannian structure into account. While the proposed RGC method performs similarly to the CSP method for short decision lengths (i.e., the amount of EEG samples used to make a decision), we show that it significantly outperforms it for longer decision window lengths.

In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, pp. 1115-1119, June 2021
Simon Geirnaert
Simon Geirnaert
Postdoctoral researcher

My research interests include signal processing algorithm design for multi-channel biomedical sensor arrays (e.g., electroencephalography) with applications in attention decoding for brain-computer interfaces.