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Abstract— Many studies have demonstrated that auditory
attention to natural speech can be decoded from EEG data.
However, most studies focus on selective auditory attention
decoding (sAAD) with competing speakers, while the dynamics
of absolute auditory attention decoding (aAAD) to a single
target remains underexplored. The goal of aAAD is to measure
the degree of attention to a single speaker, has applications
for objective measurements of attention in psychological and
educational contexts. To investigate this aAAD paradigm, we
designed an experiment where subjects listened to a video
lecture under varying attentive conditions. We trained neural
decoders to reconstruct the speech envelope from EEG in the
baseline attentive condition and use the correlation coefficient
between the decoded and real speech envelope as a metric for
attention to the speech. Our analysis shows that the envelope
standard deviation (SD) of the speech envelope in the 1-4
Hz band strongly correlates with this metric across different
segments of the speech stimulus. However, this correlation
weakens in the 0.1-4 Hz band, where the degree of separation
between the attentive and inattentive state becomes more
pronounced. This highlights the unique contribution of the
0.1-1 Hz range, which enhances the distinction of attentional
states and remains less affected by confounding factors such
as the time-varying dynamic range of the speech envelope.

Index Terms—Auditory Attention Decoding, EEG Signal
Processing, Brain Computer Interface (BCI).

I. INTRODUCTION

Auditory attention, the ability to focus on a specific speech
stimulus, is crucial in classroom and learning settings, where
the instructor’s voice often serves as the primary ‘attractor’.
However, this attention is not static and fluctuates over time,
influenced by factors such as fatigue, distractions, mind wan-
dering, etc. Gaining a deeper understanding of how auditory
attention operates and fluctuates in such environments can
provide valuable insights into learning processes, including
individual differences in how students engage with and
process information dynamically.
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In the past decade, there has been a lot of research on
EEG-based decoding of the speech envelope, in order to
decode auditory attention to natural speech. However, most
previous studies have focused on selective auditory attention
(sAAD) decoding, where attention is directed to one of
multiple competing stimuli [1]–[5]. While these methods
effectively identify which stimulus has been selected, they
do not address fluctuations in attention to a single target over
time. This gap highlights the need for methodologies capable
of absolute auditory attention decoding (aAAD)—that is,
tracking attention directed solely toward one target stimulus
over time.

When capturing fluctuations of attention toward a stimu-
lus, most studies rely on group-level analyses. For instance,
metrics like inter-subject correlation (ISC), often computed
using Generalized Canonical Correlation Analysis (GCCA),
measure synchronization between EEG signals from mul-
tiple subjects [6]. While ISC has been shown to correlate
with attention, it does not exclusively represent attentional
engagement. For example, if subjects are simultaneously
distracted by the same external stimulus, their EEG synchro-
nization may remain high despite reduced attention to the
relevant target stimulus. To address this issue, a stimulus-
aware adaptation of GCCA was proposed in [7]. However,
these group-level decoding approaches inherently rely on
data from multiple subjects, making them unsuitable for
applications focused on individual-level attention tracking.

In the domain of individual attention decoding, metrics
such as alpha power [8] and spectral entropy [9] are com-
monly used. However, these measures are limited as they
primarily reflect overall cognitive load rather than attention
directed toward a specific (auditory) stimulus [10]. Even
when a subject is not paying attention to an audio stimulus,
their mental effort can still be higher compared to when they
are attentively listening [10].

To address these challenges, this work employs individual
stimulus-aware aAAD techniques, which use a per-subject
neural decoder to reconstruct the speech envelope from EEG,
and measure its correlation with the true speech envelope.
This correlation coefficient, here referred to as the neural
envelope tracking (NET) metric, reflects the strength of the
neural response to the speech. This NET metric was shown
to be modulated by the degree of attention to the speaker
(or distractions from it), for which reason it can be used for
aAAD [10].

However, the strength of this neural response could also be



affected by other influences rather than attention. One such
confound could be the temporal variations in the acoustic
dynamic range of the speech signal, reflected by the standard
deviation (SD) of the speech envelope. In this paper, we
investigate this influence of the envelope SD on aAAD.
Our analysis reveals that envelope SD indeed correlates
with the NET metric, indicating that temporal variations
in the acoustic dynamic range of the speech introduces a
confounding effect unrelated to attention. Moreover, this
confounding effect varies across different frequency bands of
the speech envelope, highlighting the importance of selecting
an appropriate band to measure the NET, i.e., the correlation
between the real and reconstructed envelope. By selecting
the proper frequency band, the NET metric is less affected
by external factors such as the time-varying dynamic range
in the speech stimulus, allowing it to more accurately reflect
genuine cognitive attention.

The paper is organized as follows: Section II introduces
the experimental procedures. Section III details the neural
decoder design. In Section IV, we present and discuss the
experimental results. Finally, Section V concludes the paper.

II. DATA COLLECTION

A. Subjects

We recruited 30 native Dutch-speaking subjects, including
23 women and 7 men, between 18 and 35 years of age (mean
= 24 years; SD = 3 years). None reported any attention
deficits. All subjects took part voluntarily and signed an
informed consent. All experiments and procedures were
approved by the Social and Societal Ethics Committee at
KU Leuven.

B. Protocol Design

During the experiment, we recorded the subjects’ EEG
while they were watching a 75-minute course video on the
topic of ‘neuromyths’, i.e., widely believed misconceptions
about the brain that are actually untrue, based on [11]. The
video consisted of eight parts with breaks in between, with
parts 3 and 8 identical. It featured a teacher presenting only
images in a PowerPoint, with all information delivered orally.

The experiment included four distinct conditions to ex-
plore the dynamics of auditory attention. In the baseline
no manipulation condition, subjects were instructed to
actively listen to the teacher without additional prompts or
interruptions. The dual task condition required subjects to
perform an additional task at the same time, designed to
completely divert their attention away from the speaker.
These tasks involved solving several calculation exercises,
reading a text, or counting down in steps of 17 starting from
994. The remaining two conditions are not discussed as they
are beyond the scope of this study and were not analyzed
here.

The entire timeline is shown in Fig. 1, where each box
represents a 30-second window. The white boxes represent
the test segments for the ‘no manipulation’ condition, while
the red boxes represent the test segments for the ‘dual task’
condition. The gray segments were used for training the

decoder (these are all ‘no manipulation’ segments, similar
to the white boxes), as explained in Section III. The green
and purple boxes are other types of manipulations that are
not used here.

Fig. 1: An overview of the protocol. Each box represents a 30-
second window.

C. EEG Data Collection and Preprocessing

The EEG data were collected using a BioSemi Active Two
system with 64 electrodes (10-20 system) at a sampling rate
of 2048 Hz. The recorded signals were subjected to a series
of preprocessing steps to prepare them for analysis.

First, a first-order infinite impulse response (IIR) high-
pass filter with a cutoff frequency of 0.01 Hz was applied
to remove very low-frequency components, such as baseline
drift and slow variations. Subsequently, the data was down-
sampled to 128 Hz to improve computational efficiency while
retaining essential EEG features.

Unless specified otherwise, we extracted the 1-4 Hz fre-
quency range proposed in [12], which captures word rates
around 2.5 Hz (this is the default setting, we also investigate
other choices for the frequency band in Section IV). We used
a fourth-order IIR bandpass filter to extract this frequency
band, and downsampled the result to a sampling rate of 16
Hz for computational efficiency.

D. Speech Envelope Extraction

The speech envelope was used as the audio feature in this
study, as previous research has shown that certain signal
components in the EEG are phase-locked to the speech
envelope [1], [9], [10], [12]–[14]. To extract the speech
envelope, we used the procedure in [14], which employs a
gammatone filterbank to mimic the frequency selectivity of
the human cochlea, combined with a power law compression
to account for its nonlinear loudness perception.

To align with the EEG preprocessing pipeline, the resulting
envelope signal is also bandpass filtered in the same band as
the EEG data (1-4 Hz by default) and downsampled to 16Hz.



III. NEURAL DECODER DESIGN

Similar to [10], we adopt a spatio-temporal linear decoder
that aims to reconstruct the speech envelope of the presented
stimulus (i.e., the teacher’s voice) from the EEG of the
subject. Formally, we train a decoder d̂ ∈ RLC×1 over T
time samples (corresponding to the training set, i.e., the gray
boxes in Fig. 1) such that:

d̂ = argmin
d

∥s−Xd∥22 , (1)

where s = [s(0) · · · s(T − 1)]⊤ ∈ RT×1 denotes the T
samples of the speech envelope, X = [X1 · · ·XC ] ∈ RT×LC

collects the time-lagged EEG for all C channels, and

Xc =


xc(0) xc(1) · · · xc(L− 1)
xc(1) xc(2) · · · xc(L)

...
...

. . .
...

xc(T − 1) 0 · · · 0

 , (2)

which stacks L time-lagged version of the EEG signal xc(k)
at channel c, where k is the discrete time (sample) index. A
time delay of 0 to 500 ms [12] is chosen corresponding to
L = 9 (at the 16 Hz sampling rate). Note that this is a non-
causal filtering since only post-stimulus time lags are being
used. The least-squares solution of (1) is given by

d̂ = (X⊤X)−1X⊤s. (3)

This decoder is trained per subject separately. After train-
ing, the decoder is applied to the test segments of the same
subject, which is segmented into windows of 30 seconds
indexed by t. For each window t, the EEG data is represented
as X(t) ∈ RN×LC with N = 480 at 16 Hz, and the decoder
generates the output ŝ(t) = X(t)d̂. We define the Pearson
correlation coefficient between the reconstructed and true
stimulus ρ

(
ŝ(t), s(t)

)
as the ‘neural envelope tracking’ (NET)

metric to the target speech [10]. It was demonstrated in
[10], [12] that higher NET values indicate a higher level
of attention to the target speech.

IV. ANALYSIS AND RESULTS

A. Time-varying Envelope SD as a Confound

To investigate the effect of time variations in the dynamic
range of the speech stimulus on the NET metric, we com-
puted the standard deviation (SD) of the speech envelope for
each 30s segment. Fig. 2a, visualizes the relation between
these SD values and our NET attention metric (averaged
across subjects) when computed in the default 1- 4Hz band
from [12], over all test segments (white boxes in Fig. 1).
Firstly, as expected, a higher NET metric can be observed for
the baseline condition compared to the dual-task condition,
which is consistent with [10]. This difference is straightfor-
ward to explain: during the dual-task condition, subjects were
engaged in another task while ignoring the speech stimulus.
This leads to weaker neural tracking compared to the baseline
state, resulting in a decrease in the NET metric.

Secondly, we observe that the baseline condition consis-
tently shows stronger correlations between the envelope SD

(a)

(b)

Fig. 2: (a) and (b) visualizes the relation between the envelope SD
and NET metric for the 1–4 Hz and 0.1–4 Hz frequency bands,
respectively. These findings suggest that when attention is focused
on the speech stimulus, the influence of envelope SD on neural
tracking is more pronounced. Additionally, incorporating the 0.1–1
Hz range reduces this influence while enhancing the ability to
distinguish between attention states.

and the NET metric compared to the dual-task condition. For
the 1–4 Hz band, the ‘no manipulation’ condition yielded
a significant positive correlation (ρ = 0.5890, p < 0.001),
while the ‘dual task’ condition exhibited a weaker correlation
(ρ = 0.4349, p = 0.0184). These results suggest that when
attention is focused on the speech stimulus, changes in the
dynamic range of the stimulus (represented by the envelope
SD) have a stronger effect on the NET. In contrast, the
‘dual task’ condition weakens this relationship as attention
is diverted, reducing sensitivity to the envelope SD.

B. Effect of the Frequency Band on NET

In order to investigate the impact of the frequency band
over which the NET is computed (other than the default 1-
4Hz from [12]), we have tested different lower and upper
cut-off frequencies (between 0.1 and 8Hz), and evaluated
the resulting NET metric based on its ability to discriminate
between the ‘no manipulation’ and ‘dual task’ conditions.
To this end, we use the so-called Fisher Discriminant Ratio
(FDR) metric [15], defined as:

FDR =
(µi − µj)

2

σ2
i + σ2

j

, (4)

where i and j represent the two classes (‘no manipulation’
and ‘dual task’), µ denotes the mean, and σ denotes the
standard deviation of the NET scores across all 30-second



segments of the corresponding class. A higher FDR value
indicates better separability between the baseline and dual
task conditions. We found that the band 0.1-4Hz resulted
in the highest FDR ratio (averaged across subjects). The
relation between the SD envelope and NET metric for this
‘optimized’ frequency band is shown in Fig. 2b.

When comparing Fig. 2a and 2b, we observe that the 1–4
Hz band consistently exhibits higher correlations between the
envelope SD and the NET metric than the broader 0.1–4 Hz
band for both conditions, particularly in ‘no manipulation’
(ρ = 0.5890, p < 0.001 for 1–4 Hz; ρ = 0.2872, p = 0.0454
for 0.1–4 Hz). This highlights the increased sensitivity of
the 1–4 Hz range to factors related to the time-varying
dynamic range of the speech, which can limit its reliability
for decoding attention states. Incorporating the 0.1–1 Hz
range in the broader 0.1–4 Hz band reduces this envelope
SD correlation values, likely offsetting dynamic range-related
effects and making the broader 0.1-4 Hz band more robust
for capturing attention fluctuations.

Finally, we observe that the 0.1–4 Hz band better sepa-
rates the no manipulation and dual task conditions, likely
due to reduced sensitivity to dynamic range confounds. As
illustrated in Fig. 2, including the 0.1–1 Hz range improves
the overall separability of attention states. To quantify this
improvement and assess its applicability to individual sub-
jects, we first compute the FDR for each subject and then
average these FDR values across subjects. The results show
that the mean FDR increases from 0.2195 in the 1–4 Hz
band to 0.4484 in the 0.1–4 Hz band, confirming a stronger
distinction between attention states. To further analyze the
source of this improvement, we examine the mean values of
the numerator and denominator in Eq. (4) across subjects.
The mean numerator increases substantially (from 0.0027
to 0.0056), while the mean denominator remains nearly
unchanged (from 0.0118 to 0.0126). This indicates that the
primary factor driving the improvement in FDR is a larger
distance between the means of both classes, rather than a
reduced intra-class variance. Fig. 3 presents the FDR values
for each subject across the two frequency bands. Among the
30 subjects, 25 exhibit an increase in FDR when the 0.1–1
Hz range is included, underscoring the effectiveness of the
broader 0.1–4 Hz band for distinguishing attention states.

V. CONCLUSION

In this work, we have identified the confounding effect of
envelope SD on neural envelope tracking for decoding abso-
lute attention to natural speech. We have then demonstrated
that the 0.1-4 Hz components were more robust against
this confounding effect compared to 1-4 Hz. Furthermore,
we have shown that using the 0.1-4 Hz band improved the
separability between attentive and inattentive states.
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