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Atrial fibrillation (AF) is the most common arrhythmia
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Some facts:
I 1 out of 4 will develop AF
I 1% of general population
I Latent risks: cloths of blood → pulmonary embolism, stroke, …

Some trends:
1 Need for accurate and early detection
2 More and more data become available (mHealth)

Motivate this research:
Goal
The automatic detection of AF in ECG signals

Represent ECG recording by compressing it in single representative beat: results in fixed-length representation and extra denoising

X ≈ σ1
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Rank-1 approximation via SVD

segmentation
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Representative heartbeat

SVD-based detection for single-channel ECG
Modeling phase: truncated SVD

DB ≈

x(i)r ≈ Bc(i)rec

Dmodel Ûtime Ŝ Ût
rec

r

c̃(i)rec DB

Classification phase: classifying a new ECG recording x(new)
r

I Morphological features:
Solve:

x(new)
r = Bc(new)

rec → c̃(new)
rec

Compute for each class c, f (new)
c , based on:

f (new)
c =

∑
i∈c

wisi,with si = c̃(new)t
rec c̃(i)rec,∀i : 1 ≤ i ≤ M
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A clear separation between the AF class and normal class (NSR) shown by the morphological features on the
PhysioNet/Cinc challenge 2017 dataset.

I Morphological + classical heart rate variability (HRV) features

Feature set P(%) F1n F1a F1o F1

HRV 77.6 0.85 0.76 0.59 0.73
SVD 70.0 0.81 0.57 0.40 0.59
SVD + HRV 80.2 0.87 0.80 0.65 0.77

Combining the new morphological features with classical HRV features with an SVM classifier leads to higher
performances. This is shown on the PhysioNet/Cinc challenge 2017 dataset.

MLSVD-based detection for multi-channel ECG
Tensorization
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Modeling phase: truncated MLSVD

Dmodel ≈ Ŝ ·1 Ûchannel ·2 Ûtime ·3 Ûrec.

For one slice X(i)
r :

X(i)
r ≈ Ŝ ·1 Ûchannel ·2 Ûtime︸ ︷︷ ︸

B

·3c(i)rec
t ⇔ vec

(
X(i)

r

)
≈ Bt

(3)c(i)rec.

Classification phase: classifying a new multi-channel ECG recording X(new)
r

I Morphological features:
Solve:

vec
(

X(new)
r

)
= Bt

(3)c(new)
rec → c̃(new)

rec ,

compute f(new) in a similar way
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An almost perfect separation is possible based on the morphological features (MIT-BIH Arrhtyhmia + AFTDB dataset).

I Morphological + classical heart rate variability (HRV) features

Feature set AUC F1

HRV 1.000 0.983
MLSVD 0.990 0.933
MLSVD + HRV 1.000 1.000

The new morphological features result in a very high performance, using an SVM classifier (MIT-BIH Arrhtyhmia +
AFTDB dataset).

Conclusion
The designed morphological features contain a lot of information by themselves and complement the classical HRV features when other rhythms, besides
NSR and AF, are present (clinically relevant)
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