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The electrocardiogram (ECG): measuring the
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Recording the ECG
Multi-channel (e.g. Holter)

Positioning electrodes

Single-channel (mHealth)

KardiaMobile™ of AliveCor®

The Apple Watch®
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Atrial fibrillation (AF): a cardiac arrhythmia

The electrical activity of the
heart when AF is present
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Atrial fibrillation (AF): a cardiac arrhythmia
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Atrial Fibrillation: the most common cardiac
arrythymia

Prevalence

I 1 out of 4 will develop AF
I 1% of general population

Risks
Latently: cloths of blood →
pulmonary embolism, stroke, . . .

Treatment
Often medication, sometimes
electrical cardioversion, . . .
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How to improve?

Need: accurate and early detection
of AF

More and more data available
(mHealth)

5 / 25



How to improve?

Need: accurate and early detection
of AF

More and more data available
(mHealth)

Impossible to process for cardiologists?

Not i.c.w. automatic detection of AF!

5 / 25



How to improve?

Need: accurate and early detection
of AF

More and more data available
(mHealth)

Impossible to process for cardiologists?

Not i.c.w. automatic detection of AF!
Goal
The development of matrix- and tensor-based methods for the
automatic detection of AF in single- and multi-lead ECG.
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Outline

1 Detection of AF in single-channel ECG

2 Detection of AF in multi-channel ECG
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Overview of the algorithm
Single-channel ECG-signal

Preprocessing

Compute representative heartbeatCompute classical HRV-features

Modelling or clas-
sification phase?

Construct model
heartbeats with SVD

Compute morphological features

SVM

Class: NSR, AF, Other

modellingclassification
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Classical HRV-features
Single-channel ECG-signal

Preprocessing

Compute representative heartbeatCompute classical HRV-features

Modelling or clas-
sification phase?

Construct model
heartbeats with SVD

Compute morphological features

SVM

Class: NSR, AF, Other

modellingclassification
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Classical HRV-features: densities
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Computation representative heartbeat
Single-channel ECG-signal

Preprocessing

Compute representative heartbeatCompute classical HRV-features

Modelling or clas-
sification phase?

Construct model
heartbeats with SVD

Compute morphological features

SVM

Class: NSR, AF, Other

modellingclassification
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Computation representative heartbeat

Three steps:
1 R-peak detection (Pan-Tompkins) and noise removal
2 Segmentation and alignment
3 Compression in one representative heartbeat
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Computation representative heartbeat
Three steps:

1 R-peak detection (Pan-Tompkins) and noise removal
2 Segmentation and alignment
3 Compression in one representative heartbeat
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Computation representative heartbeat
Three steps:

1 R-peak detection (Pan-Tompkins) and noise removal
2 Segmentation and alignment
3 Compression in one representative heartbeat

X ≈ σ1

u1

v1
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Computation representative heartbeat
Three steps:

1 R-peak detection (Pan-Tompkins) and noise removal
2 Segmentation and alignment
3 Compression in one representative heartbeat
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Modelling and classification
Single-channel ECG-signal

Preprocessing

Compute representative heartbeatCompute classical HRV-features

Modelling or clas-
sification phase?

Construct model
heartbeats with SVD

Compute morphological features

SVM

Class: NSR, AF, Other

modellingclassification
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Matrix-based modelling
Given a model set:

≈

x(i)
r ≈ Bc(i)

rec

Dmodel Ûtime Ŝ Ût
rec

r

For x(new)
r :

x(new)
r = Bc(new)

rec → c̃(new)
rec .

Compute f (new) based on:
si = c̃(new)t

rec c̃(i)
rec, ∀i : 1 ≤ i ≤ M.

For each class C: f
(new)
c =

∑
i∈C

wisi
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Results: PhysioNet/CinC Challenge 2017

I Data: 8244 signals from AliveCor®

KardiaMobile™ of AliveCor®

I Three classes: NSR > Other > AF
I Model set of 4946 signals (60%), training and test set have equal

sizes
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Results: the optimal rank
Optimal rank: 22
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Results: the morphological features
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Results: the numbers

Method P (%) F1n, F1a, F1o F1

SVD 70.0 0.81, 0.57, 0.40 0.59
HRV 77.7 0.85, 0.76, 0.59 0.73
SVD + HRV 80.2 0.87, 0.80, 0.65 0.77
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Outline

1 Detection of AF in single-channel ECG

2 Detection of AF in multi-channel ECG
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Overview of the algorithm
Multi-channel ECG-signal

Preprocessing per channel

Compute representative
heartbeat per channelCompute classical HRV-features

Modelling or clas-
sification phase?

Construct model heart-
beats with MLSVD

Compute morphological features

SVM

Class: NSR, AF, Other

modellingclassification
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Tensor-based modelling

I Tensorization
I Modelling
I Optimal rank
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Tensor-based modelling

I Tensorization:

X(i)
r Dmodel

X(i)
r channel

recording

channel i

channel j

X(i)
r by collecting representative heartbeats channel-by-channel,

followed by X(i)
r → Dmodel

I Modelling
I Optimal rank
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Tensor-based modelling

I Tensorization
I Modelling: the multilinear singular value decomposition:

A =
S

U(1)
U(2)

U(3)

R2
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Tensor-based modelling
I Tensorization
I Modelling: the truncated MLSVD gives:

Dmodel ≈ Ŝ ·1 Ûchannel ·2 Ûtime ·3 Ûrec.

For X(i)
r :

X(i)
r ≈ Ŝ ·1 Ûchannel ·2 Ûtime︸ ︷︷ ︸

B

·3c(i)
rec

t

⇔ vec
(
X(i)

r
)

≈ Bt
(3)c

(i)
rec.

For X(new)
r :

vec
(
X(new)

r
)

= Bt
(3)c

(new)
rec → c̃(new)

rec ,

similarly f (new).
I Optimal rank

19 / 25



Tensor-based modelling

I Tensorization
I Modelling
I Optimal rank: solution for complexity is sequential optimization

(with cross-validation):
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Results: MIT-BIH AFIB & AFTDB dataset

I 23 + 80 two-channel Holter signals, long duration
I MIT-BIH AFIB: no independence, only NSR
I AFTDB: independence in-between sets and within test set
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Results: the optimal multilinear rank
Optimal multilinear rank: (1,23,23)
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Results: the morphological features
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Results

Method AUC F1

MLSVD 0.99 0.933
HRV 1.00 0.983
MLSVD + HRV 1.00 1.00
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Results: analysis linear SVM

Linear SVM:
y(f) = sign(vtf + b),

with f ∈ R12 and v =
#SV’s∑
k=1

αkykfk ∈ R12.
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Results: analysis linear SVM

Linear SVM:
y(f) = sign(vtf + b),

with f ∈ R12 and v =
#SV’s∑
k=1

αkykfk ∈ R12.

vt = [ fNSR fAF AVRR RMSSD pRR50 HTI min(RR) SD1/SD2 ApEn Toeplitz CoV(∆RR) AFEvidence

−0.55 0.42 −0.22 0.26 0.50 0.47 −0.14 −0.12 0.45 0.27 0.29 0.51
]
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Conclusion and outlook

To conclude:
I The designed features, based on SVD and MLSVD, quantify

morphology and can be used as such
I Morphological + HRV-features > HRV-features when other

classes are present
Outlook:
I MLSVD-method should be tested on larger datasets
I Extension to long-term signals
I Use Higher-Order Discriminant Analysis to perform supervised

subspace learning
I Coupling of datasets (across modalities) by using coefficients as

features
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Results: analysis size model set
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Multi-lead ECG: alternatives

I Tensor-based: see Tensor-based modelling

I Tensor-based: solution per channel

x(i,k)
r ≈ Ŝ ·1 c(k)

c
t ·2 Ûtime ·3 c(i)

rec
t

I Matrix-based:
DT

model,(3) ≈ ÛtcŜÛt
rec
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Multi-lead ECG: alternatives
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Multi-lead ECG: alternatives

Method AUC

MLSVD 0.99
SVD 0.97
MLSVD, per channel (all/1/2) 0.97/0.91/0.91
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