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Abstract—Atrial fibrillation (AF) is the most common cardiac
arrhythmia, increasing the risk of a stroke substantially. Hence,
early and accurate detection of AF is paramount. We present a
matrix- and tensor-based method for AF detection in single- and
multi-lead electrocardiogram (ECG) signals. First, the recordings
are compressed into one heartbeat via the singular value decom-
position (SVD). These representative heartbeats, single-lead, are
collected in a matrix with modes time and recordings. In the
multi-lead case, we obtain a tensor with modes lead, time and
recording. By modeling the matrix (tensor) with a (multilinear)
SVD, each recording, as well as new recordings, can be expressed
by a coefficient vector. The comparison of a new coefficient vector
with those of the model set results in morphological features,
which are combined with heart rate variability information in a
Support Vector Machine classifier to detect AF. The SVD-based
method is tested on the 2017 PhysioNet/CinC Challenge dataset,
resulting in an F1-score of 0.77. The multilinear SVD-based
method is applied on the MIT-BIH AFIB and AFTDB dataset,
resulting in a perfect separation. An advantage of our methods
is the interpretability of the features, which is a key element in
the application of automatic methods in clinical practice.

I. INTRODUCTION

Atrial fibrillation (AF) affects approximately one percent of
the general population, making it the most widespread cardiac
arrhythmia [1]. During AF, electrical chaos originates in the
atria, resulting in uncoordinated and unsynchronized muscle
contractions, which cause the atria to flutter or fibrillate.
The atrioventricular node filters these additional impulses so
the ventricles still contract normally, although at a highly
irregular rate. Since the cardiac pump function is mainly
driven by ventricular contraction, it remains unaltered, but the
accumulation of blood in the atria can cause the formation of
blood clots which possibly leads to pulmonary embolism or
strokes [1].

AF affects both heartbeat morphology and heart rate, al-
lowing one to effectively diagnose the arrhythmia via the
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electrocardiogram (ECG). More specifically, AF replaces the
contraction of the atria with fibrillations, eliminating the P-
wave. Early detection is essential to start treatment which
is often done with medication [2]. The need for an early
and accurate detection of AF motivates the development of
automatic methods to assist cardiologists in the processing
of large amounts of data which originate, for example, from
mobile health technologies.

In this paper, we present a method that combines informa-
tion from the heart rhythm and the morphology of heartbeats
in order to detect AF in short-term single- and multi-lead
ECG signals. While heart rate variability (HRV) features are
well-known in literature, see for example [3], we focus on
the design of morphology-based features in this paper. More
specifically, we use a similar method as proposed for irregular
heartbeat detection [4].

In the preprocessing stage, ECG recordings of different
lengths can be represented in a matrix by compressing them
each in one representative heartbeat via the singular value
decomposition (SVD). In the modeling stage, representative
heartbeats, single-lead, of different recordings are collected
into a matrix, which is then modeled by an SVD. Each
representative heartbeat is represented in the model by one
compressed coefficient vector. When considering a new ECG
signal, for which we have to determine whether AF activity is
present or not, we can apply a similar strategy. By comparing
the obtained coefficient vector of the new signal with the
database of known coefficient vectors, one obtains a similarity
measure with each rhythm present in this model set. In the
last step, we combine this morphological information with
traditional HRV features in a Support Vector Machine (SVM)
classifier to determine one final label.

This method can be extended and generalized in an intuitive
way to tensor-based modeling using the multilinear singular
value decomposition (MLSVD) [5] for multi-lead ECG sig-
nals. In multi-lead ECG, the electrical activity of the heart is
registered from different directions, resulting in extra spatial
information. The tensor allows to fully exploit the higher-order
structure in the multi-lead ECG data.

In the remainder of this section, we describe notations and
definitions. We present an SVD-based method for single-lead
ECG in Section II and generalize to multi-lead ECG using
tensors in Section III. We discuss experiments in Section IV.
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A. Notations and definitions

Scalars, vectors, matrices and tensors are denoted by low-
ercase (t), bold lowercase (t), bold uppercase (T) and cal-
ligraphic letters (T ), respectively. A mode-n vector of a
tensor T ∈ RI1×I2×···×IN is the vector obtained by fixing
all indices but the nth. The mode-n unfolding is the matrix
T(n) ∈ RIn×J , with J =

∏N
k=1
k 6=n

Ik, with the mode-n vectors

as its columns, ordered as in [6]. The vectorization of a tensor
is a vector vec (T ) ∈ RJ , with J =

∏N
k=1 Ik, constructed by

filling it first by the first mode, then the second mode, . . . ,
until the N th mode.

The Kronecker product of two matrices is denoted by
⊗. The mode-n product of a matrix U ∈ RJ×In and
a tensor T ∈ RI1×I2×···×IN is a tensor T ·n U ∈
RI1×···×In−1×J×In+1×···×IN in which each mode-n vector is
multiplied with U : (T ·n U)(n) = UT(n).

The multilinear rank of a tensor is the tuple of mode-n
ranks, where the mode-n rank is equal to the rank of the
mode-n unfolding of the tensor.

B. Multilinear singular value decomposition

The multilinear singular value decomposition (MLSVD) is
the higher-order generalization of the SVD for tensors [5].

Definition. The multilinear singular value decomposition of
a third-order tensor T ∈ RI1×I2×I3 is equal to:

T = S ·1 U(1) ·2 U(2) ·3 U(3),

with orthogonal factor matrices U(n) ∈ RIn×In and all-
orthogonal and ordered core tensor S ∈ RI1×I2×I3 .

The MLSVD has been used successfully in various signal
processing and machine learning applications such as com-
pression and dimensionality reduction [6]–[8].

II. SVD-BASED DETECTION IN SINGLE-LEAD ECG

In this section, we explain that AF detection in single-lead
ECG can be accomplished by first compressing different ECG
recordings in a single representative heartbeat. Next, a model
matrix of representative heartbeats is constructed and modeled
by means of an SVD. New recordings can be characterized and
classified by computing the new coefficient vector with respect
to the model. In the next section, we generalize our method
to multi-lead ECG by using tensors.

A. Compression in one representative heartbeat

Assuming preprocessed signals, we compress the single-
lead ECG recording into one representative heartbeat to ac-
commodate for variable-length recordings. This enables us to
collect different recordings into one matrix. Furthermore, this
compression results in a denoising effect, removing irrelevant
variations across heartbeats.

First, we use the Pan-Tompkins algorithm [9] to detect the
R-peaks, allowing us to segment the signal into fixed-length
windows of 580ms, starting 250ms before and ending 330ms
after each R-peak. We use the aforementioned values such that
both the P-wave and T-wave are included in each segment,

see [4]. Next, the different windows are optimally aligned by
maximizing the cross-correlation between different windows.
This enables full exploration of the structure in the heartbeats.

The aligned heartbeats are collected in a K × N matrix
X, with K the number of heartbeats and N the number
of samples in a heartbeat. Next, we compress all heartbeats
into one representative heartbeat xr ∈ RN using the SVD.
The Eckart-Young theorem states that the best rank-1 ap-
proximation of a matrix X can be calculated by means of
an SVD: X ≈ σ1u1v

T
1. Vector v1 ∈ RN serves as a basis

vector of the heartbeats space. This vector is rescaled to norm
one and represents the representative heartbeat for the signal.
Approximating the aligned heartbeats with a rank-1 matrix
is meaningful because the variation between beats within a
short-term signal is typically quite small, which corresponds
to a single dominant singular value.

B. Model construction

In the modeling stage, a model set of representative heart-
beats from different recordings is used to construct a basis for
the recording space. The labels of the signals in the model
set, corresponding to the underlying rhythm in the signal, are
considered to be known.
Dmodel ∈ RN×M is the matrix containing all M represen-

tative heartbeats xr ∈ RN from the model set of M ECG
recordings. We compute a low-rank model via the truncated
SVD:

Dmodel ≈ ÛtimeŜÛ
T
recording, (1)

with Ûtime ∈ RN×r an orthonormal basis for a time subspace,
Ûrecording ∈ RM×r an orthonormal basis for a recordings
subspace and Ŝ ∈ Rr×r the core diagonal matrix.

The rank of the truncated SVD in (1), denoted by r, is
crucial to tune the model in order to obtain good generalization
properties, balancing between under- and overfitting.

Each representative heartbeat x
(i)
r , 1 ≤ i ≤ M (i.e., each

column from Dmodel) is expressed by (1) as:

≈

x
(i)
r ≈ Bc

(i)
rec ,

Dmodel Ûtime Ŝ ÛT
recording

r

with c
(i)
rec

T
∈ Rr the ith row from Ûrecording. This is the

coefficient vector that expresses the corresponding signal in
the basis spanned by B. These column vectors are unique
up to sign and scaling and will therefore be normalized. All
normalized coefficient vectors c̃

(i)
rec = sign(c(i)rec,1)

c(i)
rec∣∣∣∣∣∣c(i)

rec

∣∣∣∣∣∣
2

then

form a database. Each vector of this database has a known
label and is afterwards used for classification of new signals.



C. Classification of new recordings

A new ECG signal is first compressed, as explained in
Subsection II-A. We then project the new representative heart-
beat x(new)

r onto the space spanned by B, resulting in a new
coefficient vector c

(new)
rec . This boils down to the following

computation:
c(new)

rec = Ŝ−1ÛT
timex

(new)
r .

Comparison between the normalized new coefficient vector
c̃
(new)
rec and the coefficient vectors in the database is done

by pairwise calculation of the inner product, resulting in a
similarity score between the new signal and all signals in the
database:

si = c̃(new)T

rec c̃(i)rec ,∀i : 1 ≤ i ≤M.

We then compute a weighted average of the similarity scores
per class c, resulting in a similarity score between the new
signal and each rhythm present in the database:

f (new)
c =

∑

i∈c
wisi,

with c the set of recordings in a predefined class/rhythm.
These scores are collected into one vector f (new) of morpho-

logical features. A meaningful weight vector, typically only
averaging over the W best scores, as well as W , can be
empirically determined.

Finally, different classification algorithms can be used to
obtain a classification from the feature vector f (new). The most
straightforward method is to assign to the new signal the label
of the class which has the highest score. This method is for
example used during cross-validation to determine the optimal
rank. In Subsection III-E, SVMs are used for classification to
simplify the integration of the morphological feature vector
with other HRV features. This is an important extension
w.r.t. [4], where only the straightforward method is used.
In [10], a similar extension to an extra machine learning
classifier is adopted.

III. MLSVD-BASED DETECTION IN MULTI-LEAD ECG
Clinically, ECG is usually measured with multiple leads.

This section describes a method to detect AF in multi-lead
ECG signals using the same principles as the previous method.

A. Tensorization

We now use a model set of known multi-lead ECG signals
as basis for the model. As in the previous method, the ECG
signals are first preprocessed lead-by-lead to improve the sig-
nal quality. They are then compressed into one representative
heartbeat per-lead, where it is ensured that the sign of the
R-peak is positive. Since a multi-lead ECG signal naturally
has a second-order structure, stacking the representative beats
as frontal slices of a model tensor Dmodel automatically leads
to a tensorization which preserves the structural information
between all leads, see Figure 1. Dmodel ∈ Rnk×N×M has
modes lead × time × recording, with nk the number of leads,
N the number of samples per representative heartbeat and M
the number of recordings in the model set.

X
(i)
r Dmodel

X
(i)
r

lead

recording

lead i

lead j

Fig. 1: Tensorization of the different multi-lead ECG signals
of the model set, after per-lead computation of a representative
heartbeat. The resulting third-order tensor has modes lead ×
time × recording.

B. Model construction

The truncated MLSVD provides a low multilinear rank
approximation of our model tensor Dmodel. Although it is
known that the Eckart-Young theorem does not generalize to
tensors [5], the approximation is reasonably good. We obtain:

Dmodel ≈ Ŝ ·1 Ûlead ·2 Ûtime ·3 Ûrecording, (2)

where Ûlead ∈ Rnk×rlead , Ûtime ∈ RN×rtime and Ûrecording ∈
RM×rrecording form orthonormal bases for the corresponding
subspaces. Ŝ ∈ Rrlead×rtime×rrecording explains the interaction
between the different modes.

Each multi-lead ECG signal with nk leads and thus nk

representative heartbeats X
(i)
r ∈ Rnk×N can be written as

vec
(
X(i)

r

)
≈ Bc(i)rec ,

with B = BT
(3) ∈ RnkN×rrecording the mode-3 unfolding of the

tensor B = Ŝ ·1 Ûlead ·2 Ûtime:

B = (Ûtime ⊗ Ûlead)Ŝ
T
(3).

The columns of B then form a basis, not orthogonal anymore,
for all leads. The coefficient vector expresses a multi-lead ECG
signal in all leads simultaneously.

In a similar fashion as for the matrix case, the normalized
coefficient vectors c̃(i)rec constitute a labeled database which can
be employed for classification.

C. Rank estimation

The optimal multilinear rank in (2) can be determined using
sequential cross-validation. We try to overcome the heavy
complexity of standard cross-validation, in which the number
of multilinear rank values to be assessed scales as a third power
with the size of the search interval. This sequential cross-
validation improves on the initial guess of the multilinear rank
by fixing in each iteration two rank values, while varying the
other one:

· · · −→
r
(i)
lead

r
(i)
time

r
(i)
rec





Vary
−−→
r
(i)
time

r
(i)
lead

r
(i+1)
time

r
(i)
rec





Vary
−−→
r
(i)
rec.

r
(i)
lead

r
(i+1)
time

r
(i+1)
rec





Vary
−−→
r
(i)
lead

r
(i+1)
lead

r
(i+1)
time

r
(i+1)
rec




−→ · · ·



TABLE I: Traditional HRV features from literature.

AVRR Average RR interval

RMSSD Root Mean Square of the differences between
subsequent RR intervals [3]

pRR50 Fraction of subsequent RR intervals that differ
more than 50ms [3]

Cov(∆RR) Coefficient of variation of the ∆RR intervals [12]
min(RR) Minimal RR interval

HTI HRV Triangular Index, characterizing the concentration
of the RR interval histogram [13]

SD1/SD2 ratio Characterizes the Poincaré plot of RR intervals [13]

AFEvidence Characterizes the Poincaré plot of
∆RR intervals [14], [15]

ApEn Approximate entropy, quantifying the
complexity of the signal [16], [17]

Toepliz distance A new feature that quantifies the uniformity of
RR intervals in a global way, see Algorithm 1

Note that the choice of the order in which the rank values are
varied is important, as there will be a bias towards the rank
value(s) optimized last.

D. Classification of new recordings

In a similar way as described in Subsection II-C new ECG
signals can be classified by computing the coefficient vector in
basis B. Given the per-lead representative heartbeats X

(new)
r ,

the coefficient vector c(new)
rec can be found by solving:

vec
(
X(new)

r

)
= Bc(new)

rec ,

which can then be processed in a similar way as in Subsec-
tion II-C. Note that the underlying assumption is that the lead
space does not change for new ECG recordings, because Ûlead
is fixed. This corresponds to the reasonable assumption that
the ECG is measured in a normalized fashion. The removal
of this assumption results in a so-called Kronecker product
equation [4], [11].

E. Combination of morphological and HRV features

In the final stage of the algorithm, the morphological
features derived in Sections II and III are combined with
traditional HRV features, which are shown in Table I. We
combine the HRV and morphological features into one feature
vector, which serves as an input for a classifier.

Algorithm 1 Computation Toeplitz distance
Input: Vector q ∈ NP of positions of R-peaks
Output: Toeplitz distance td

1: Construct symmetric distance matrix D ∈ RP×P , with
Dij = |qj − qi| , 1 ≤ i, j ≤ P

2: Compute g ∈ R2P−1, with gi =
average(

[
DP−i+1,1 DP−i+2,2 · · · DP,i

]
) and

g2P−i = gi, 1 ≤ i ≤ P
3: Construct the Toeplitz matrix Dtoep ∈ RP×P , with gener-

ating vector g
4: Compute the Toeplitz distance: td = 1

P ‖D−Dtoep‖F
5: return td

TABLE II: The data profile of the model, training and test set
of the single-lead PhysioNet/CinC Challenge 2017 dataset.

Class

Normal AF Other Total

Model set 3062 413 1471 4946
Training set 994 163 493 1650
Test set 994 162 492 1648

Total 5050 738 2456 8244

IV. RESULTS AND DISCUSSION

A. SVD-based detection in single-lead ECG

We illustrate our SVD-based detection in single-lead ECG
on the 2017 PhysioNet/Computing in Cardiology challenge
dataset [18], [19]. This dataset consists of 8244 publicly
available single-lead ECG signals. We consider three classes:
normal sinus rhythms (NSR), AF and other signals. This latter
class contains signals with other abnormal rhythms or on
which annotators disagreed. The signals have a length between
9 and 60 seconds. Table II shows how the signals are divided
over the different classes.

We apply compression as explained in Subsection II-A,
obtaining representative heartbeats of size N = 176. The
model matrix Dmodel ∈ R176×4946 is modeled with a rank-
22 approximation, obtained after 10-fold cross-validation in
search interval [1, 30]. The search interval can be determined
based on visual inspection of the singular values. The weight
vector in Subsection II-C is empirically chosen equal to:
[
0.3478 0.1739 0.1304 0.0870 0.0435 0.0217 0.0217 0.0217

0.0217 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217
]

to be multiplied with the 15 best similarity scores. The highest
score is twice as important as the second one. Note that for
interpretability of the resulting features, the weight vector
sums up to one.

We show the two-dimensional projections of the morpho-
logical features f ∈ R3 for each combination of classes in
Figure 2. There is a clear separation between the normal
and AF classes on the one hand and the AF and other
classes on the other hand. The classes of normal and other
signals are however strongly overlapping: many signals in the
other category show a large morphological resemblance to
normal signals. This could be due to HRV information that is
lost in the segmentation, or disagreement between annotators
(although a signal is normal).

Figure 3 shows the results of an experiment to evaluate the
choice of the size of the model set in Table II. This figure
shows the F1 score based on the straightforward classification
method of assigning each test signal to the class with the
largest morphological similarity. For each size of the model
set, 20 random model sets are constructed of the corresponding
size, while the testing happens on the remaining part of
the dataset. Note that the largest increase in performance is
seen for AF. AF signals show the largest variation and are
represented the least in the total dataset. This explains why
more examples in the model set lead to a better model. Note
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Fig. 2: While the morphological features discriminate well between NSR and AF and between AF and Other, there is a large
overlap between NSR and Other. We visualize this via the 2D projections of morphological feature vector f ∈ R3 for the
multi-lead dataset. The projections show the datapoints from each combination of classes together with the first bisector.
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Fig. 3: The increase in performance when increasing the size
of the model set is the largest for the AF class, given the
large variation in morphology and the small representation in
the total dataset. The size of the model set in the experiments
of Table II is chosen well (dotted line), given that the per-
formance does not significantly increase anymore for larger
model sets.

that there is no increase in performance for NSR, given that
this class is largely represented and corresponds to a very
regular rhythm. It also supports the choice made in Table II,
given that the total performance does not increase significantly
anymore for larger model sets.

We choose an SVM classifier, using one-vs-one coding.
Optimization of hyperparameters is done with ten-fold cross-
validation, while different kernels are tested. Table III indicates
that, without using HRV features, the SVM with a linear
kernel obtains the best results with an F1 score of 0.593.
Other kernels give similar results, which is expected because
of the distribution of the data (Figure 2). For the other feature
sets, an RBF kernel was chosen after validation. Only using
HRV features, optimally selected to discriminate AF signals,
a global F1 score of 0.732 can be obtained. The optimal F1

score of 0.77, is achieved by combining the new morphological

TABLE III: Combining the morphological features, that have
been obtained by our method, with the classical HRV informa-
tion results in a higher performance than only using classical
HRV information.

Method P (%) F1n, F1a, F1o F1

HRV 77.67 0.853, 0.760, 0.585 0.732
SVD 70.02 0.813, 0.570, 0.396 0.593
SVD + HRV 80.22 0.866, 0.796, 0.647 0.770

features and classical HRV features, and is comparable to
other methods [18]. The top-performing algorithm of the
competition achieves a F1 score of 0.83. Care must be taken
when comparing the obtained results with the results of the
competition because for the latter an additional noisy class
was added and a hidden test set was used. An important
advantage of the designed method is the interpretability: the
morphological similarity scores are readily interpretable by
cardiologists. Furthermore, these features are computed based
on well-founded algebraic principles. The decision-making
in the case of a linear SVM is interpretable as well, by
inspecting the individual coefficients of the SVM. This is
different from for example deep learning methods, which are
less interpretable because of the complete black-box modeling.
This argument should not be underestimated in the attempt to
design automatic methods in a clinical context. The normal
class has the best classification performance for all classifiers.
As expected, most misclassifications are seen between the
normal and other class. It could be helpful to divide this other
class further in more specific subclasses to obtain a better
performance.

B. MLSVD-based detection in multi-lead ECG

The MLSVD-based detection method is tested on a multi-
lead dataset, constructed by combining two publicly available
datasets: the MIT-BIH Atrial Fibrillation dataset [19], [20] and
the AF Termination Challenge dataset [19], [21].

The first dataset consists of 23 two-lead Holter signals,
containing signals of patients with paroxysmal or intermittent
AF. From these signals, 80 segments of one minute were



TABLE IV: The data profile of the model, training and test
set of the MIT-BIH AFIB & AFTDB dataset.

Class

Normal AF Total

Model set 30 30 60
Training set 20 20 40
Test set 30 30 60

Total 80 80 160

TABLE V: Even though the AUC does not increase by com-
bining the morphological features, obtained via our method,
with classical HRV information, the morphological features by
themselves contain a high degree of information.

Method P (%) AUC F1n, F1a F1

HRV 98.33 1.000 0.984, 0.983 0.983
MLSVD 93.33 0.990 0.935, 0.931 0.933
MLSVD + HRV 100.00 1.000 1.000, 1.000 1.000

extracted at random, all containing portions of the signal with a
normal sinus rhythm. The second dataset, the AF Termination
Challenge dataset, contains 80 Holter ECG signals (two leads).
All signals are AF signals with a fixed length of one minute.

The final dataset is a combination of all signals from the
AFTDB dataset and the 80 normal segments of the MIT-BIH
AFIB dataset. The signals from the MIT-BIH dataset were
resampled to obtain the same sampling frequency. Table IV
gives a summary of all signals in the final dataset. Note that
the test set contains, for the AF class, independent subjects
from the model and training set.

After preprocessing and per-lead compression, the model
tensor Dmodel ∈ R2×76×60 is modeled with a rank-(1, 23, 23),
obtained after 20-fold cross-validation. The weight vector is
chosen equal to:

[
0.3902 0.1951 0.1463 0.0976 0.0488

0.0244 0.0244 0.0244 0.0244 0.0244
]

taking only the best ten scores into account. All computations
were performed in MATLAB using Tensorlab [22].

The results in Table V indicate that only by using the
morphological features f ∈ R2 a good discrimination is
possible between normal and AF signals. We again choose
an SVM classifier and optimize the hyperparameters using
ten-fold cross-validation. After validation, a linear kernel was
used for the MLSVD method. The other two SVM’s were
trained with an RBF kernel. Figure 4 shows the morphological
features for all signals in both the training and test set,
independent from the model set, together with the SVM
decision boundary. Two clusters can be clearly distinguished:
the samples in the upper left part of the plot correspond
with signals which show a large morphological similarity
with AF signals (fAF > fNSR) while the points in the lower
right part show a larger correspondence with normal signals
(fNSR > fAF). The linear decision boundary is capable of
separating most of these points.
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Fig. 4: Using the morphological features f ∈ R2 for the multi-
lead dataset, an almost perfect separation is possible: only
three false negatives and one false positive are present in the
test set. The linear SVM decision boundary is shown, trained
and evaluated on the showed training and test sets.

Adding the HRV features results in a perfect classification:
the two classes are completely separable. Note that only using
HRV features we also obtain an AUC of one, meaning that
this feature set is very informative to separate normal and AF
signals. While the morphological features do not add extra
performance per se, they do contain a lot of discriminative
information.

V. CONCLUSION

We presented an SVD-based method to detect AF in single-
lead ECG, extending and generalizing it to multi-lead ECG via
an MLSVD-based method. ECG-signals are first compressed
into one representative heartbeat. A model matrix or tensor is
then modeled with the (ML)SVD, which leads to a compressed
representation of each signal in the constructed basis. Each
new signal can be expressed accordingly in the constructed
basis, leading to a morphological similarity with predefined
rhythms in the model set. These similarities can be combined
with traditional HRV-features to train an SVM to classify new
signals. The methods achieved high performance on different
datasets, comparable with other methods in literature. In future
work, the MLSVD-method could be tested in a more extensive
way on a larger dataset, possibly also dividing the other class
into more specific rhythms. A second extension is the usage of
higher-order discriminant analysis to learn the subspace over
the model set in a supervised way, while the current method
constructs a basis in an unsupervised, PCA way. A similar
method has already been applied to EEG classification [10].
Finally, research could be done to supply coupling between
datasets, across different number of leads and technology.
In such a method, the model set could be multi-lead ECG,
originating from the hospital, while the training and test set
could be single-lead, originating from for example mobile
health technologies. Such coupling could be achieved by using



the coefficient vectors themselves as input for the SVM, rather
than computing the similarity with the signals in the model set.
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