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ABSTRACT

It is possible to decode auditory attention to speech from elec-
trophysiological brain recordings such as electroencephalography
(EEG). Such an auditory attention decoding (AAD) allows, e.g., to
determine to which person a listener is attending in a multi-talker
scenario. The vast majority of research has focused on developing
supervised AAD algorithms in which the decoder is trained based
on ground truth labels about the attention to each speaker. However,
to work optimally, the trained decoders must be subject-specific and
adapt over time to track sudden changes in signal statistics (e.g.
electrode failures). Since it is often impractical to regularly retrain
these decoders with a dedicated calibration session, an unsupervised
algorithm has recently emerged as an alternative.

In this paper, we show that the state-of-the-art unsupervised
AAD algorithm is biased by its initialisation, which leads to a sub-
optimal convergence. This bias has the largest effect when only
a limited amount of data is available to train it, e.g. to train an
unsupervised decoder that can quickly adapt to sudden changes.
We show that this bias can be easily removed, leading to a better
classification accuracy. However, the gain in accuracy reduces as
the number of classified segments increases.

Index Terms— Auditory attention decoding, unsupervised
learning, electroencephalography, neuro-steered hearing devices

1. INTRODUCTION

As sound travels through the ear and stimulates the auditory nerves,
it evokes a neural response that is phase-locked to the envelope of
that sound. This neural response differs when the sound is attended
or unattended [1, 2], enabling us to decode from the neural response
to which speaker a person is attending in a multi-talker scenario [3,
4]. This problem is known as auditory attention decoding (AAD),
and it has applications in, e.g., neuro-steered hearing devices [5].

To work optimally, state-of-the-art auditory attention decoders
must be trained subject-specifically during a supervised training ses-
sion of at least 20-30 minutes [5, 6], which is cumbersome for real-
life use. Subject-independent decoders can circumvent this manda-
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tory training session, but perform significantly worse [3,5]. Further-
more, both models are fixed and thus unable to adapt to changes in
brain responses, electrodes or listening environments [6].

The aforementioned problems make unsupervised, subject-
specific models paramount. They can adapt to changes in signal
statistics, have the potential to approximate the performance of su-
pervised subject-specific models [6] and inherit the plug-and-play
nature of subject-independent models.

State-of-the-art unsupervised auditory attention algorithms iden-
tify which speech stream is attended by reconstructing the envelope
of attended speech from electroencephalography (EEG) signals us-
ing a least-squares model [3, 4, 6, 7]. The correlation between the
reconstructed and the original envelope is then used to classify the
speech as attended or unattended. The least-squares model is trained
to specifically reconstruct attended envelopes and thus inherently re-
quires ground-truth labels. To mitigate this, the unsupervised algo-
rithm iteratively retrains the least-squares model using its own pre-
dictions as training labels, counting on a self-leveraging effect to
converge to an optimal point [6, 7].

In this paper, we show that this iterative procedure is biased
against switching labels over iterations. This bias has a larger de-
teriorating effect when little training data are present. However, the
unsupervised least-squares model is ideally trained on little data to
ensure fast adaptability to sudden changes in signal statistics (e.g.
a sudden electrode failure) [6]. We show that removing this bias is
relatively straightforward, yet can lead up to a 30% improvement
in classification accuracy on the updating set when the number of
segments is small.

The outline of the paper is as follows. In Section 2, we review
and analyse the unsupervised auditory attention decoding algorithm
from [6, 7], prove that it is biased against switching labels between
iterations and that this bias can be removed with a simple proce-
dure. This theoretical discussion is validated on real data in Section
3, where we discuss the conducted experiments and report the re-
sults. We draw conclusions in Section 4.

2. INITIALISATION BIAS IN UNSUPERVISED AAD

The linear AAD algorithm introduced in [3] uses a spatio-temporal
decoder which reconstructs the envelope of the attended speech s(t)
from EEG signals. Given an EEG segment Xk ∈ RC×T with C the
number of EEG channels, k the segment index and T the length of
the EEG segment, the corresponding reconstructed speech envelope
is then:

ŝk(t) =

C∑
c=1

L−1∑
l=0

D(c, l)Xk(c, t+ l), (1)



where D ∈ RC×L is the decoder matrix, and L is the number of
post-stimulus time lags that are used in the reconstruction.

Equation (1) can be written as an inner vector product:

ŝk(t) = d⊤xk(t), (2)
with xk(t) = [Xk(1, t) . . . Xk(1, t+ L− 1), . . . ,

Xk(C, t) . . . Xk(C, t+ L− 1)]⊤,

and similarly for rewriting D as d.
In a supervised model, d is optimised such that it minimises the

squared distance between ŝk(t) and the attended speech envelope
sa,k(t) across all segments k, i.e.

d̂ = argmin
d

K∑
k=1

T−L∑
t=0

(d⊤xk(t)− sa,k(t))
2, (3)

with K the total number of segments. (3) is the well-known least-
squares problem, with as solution

d̂ ∝ R−1
xx rxs, (4)

with Rxx =

K∑
k=1

T−L∑
t=0

xk(t)xk(t)
⊤ ≡

K∑
k=1

Rxx,k (5)

rxs =

K∑
k=1

T−L∑
t=0

xk(t)sa,k(t) ≡
K∑

k=1

rxsa,k,

where the former represents the spatio-temporal autocorrelation ma-
trix of the EEG data, and the latter represents the cross-correlation
vector between the EEG signal x(t) and the attended speech enve-
lope sa(t), for L time lags.

For each test segment, the speech envelope with the highest
Pearson correlation to the reconstructed envelope is classified as at-
tended.

Note that (4) requires knowledge of which of the two stimuli
is attended. This information is not available in an unsupervised
setting. In [7], an iterative procedure is proposed to (re-)train the
decoder without the use of ground truth labels. In this method, the
decoder is first trained using random labels, which then reconstructs
an initial envelope. This generates a set of K labels l ∈ BK×1 with
lk ∈ {0, 1}, which are used to iteratively recompute the decoder d̂
and regenerate the set of labels l until convergence. The complete
unsupervised algorithm from [7] is summarised in Algorithm 1.

To show that the classification in Algorithm 1 is biased, we
will further simplify (6) by assuming without loss of generality that
rss1 = rss2 = 1. In this case, a label l(i+1)

k = 1 at iteration i+1 if:

r⊤xsR
−1
xx rxs1,k > r⊤xsR

−1
xx rxs2,k

⇐⇒
K∑

j=1

(
l
(i)
j rxs1,j + (1− l

(i)
j )rxs2,j

)⊤
R−1

xx rxs1,k >

K∑
j=1

(
l
(i)
j rxs1,j + (1− l

(i)
j )rxs2,j

)⊤
R−1

xx rxs2,k. (7)

Let us now consider the case where the resulting label for seg-
ment k in iteration i+ 1 is l(i+1)

k = 1, i.e., speaker 1 is identified as
attended. In case l

(i)
k was equal to 0 in the previous iteration i, (7)

Algorithm 1: Biased unsupervised AAD
Compute Rxx as in (5).
while l changes do

Estimate the cross-correlation vector:

rxs =

K∑
k=1

l
(i)
k rxs1,k + (1− l

(i)
k )rxs2,k.

for k ∈ [1 . . .K] do
Compute the Pearson correlation coefficient

between ŝk(t) = r⊤xsR
−1
xxxk(t) and the two

speech envelopes s1,k(t), s2,k(t):

ρ1/2,k ≡
r⊤xsR

−1
xx rxs1/2,k√

r⊤xsR
−1
xxRxx,kR

−1
xx rxs

√
rss1/2,k

,

(6)
with rxs1/2,k as defined in (5) and
rss1/2,k =

∑T−L
t=0 s1/2,k(t)

2.

l
(i+1)
k = 1 if ρ1,k > ρ2,k, else l

(i+1)
k = 0.

becomes:
K∑

j=1,j ̸=k

(
l
(i)
j rxs1,j + (1− l

(i)
j )rxs2,j

)⊤
R−1

xx (rxs1,k − rxs2,k) >

r⊤xs2,kR
−1
xx rxs2,k − r⊤xs2,kR

−1
xx rxs1,k. (8)

However, if the label was already equal to l
(i)
k = 1 in iteration i,

l
(i+1)
k = 1 in the next iteration if:

K∑
j=1,j ̸=k

(
l
(i)
j rxs1,j + (1− l

(i)
j )rxs2,j

)⊤
R−1

xx (rxs1,k − rxs2,k) >

r⊤xs1,kR
−1
xx rxs2,k − r⊤xs1,kR

−1
xx rxs1,k. (9)

Note that the lefthand sides of (8) and (9) are equal, and should
be r⊤xs2,kR

−1
xx rxs2,k + r⊤xs1,kR

−1
xx rxs1,k − 2r⊤xs1,kR

−1
xx rxs2,k > 0

larger if l
(i)
k = 0 compared to when l

(i)
k = 1 to get l(i+1)

k = 1.
Therefore, the threshold for identifying speaker 1 as attended for
segment k in iteration i + 1 is larger in case l

(i)
k = 0 than in case

l
(i)
k = 1. This causes the model to be biased towards keeping
l
(i)
k and l

(i+1)
k identical, even if l(i)k is chosen completely randomly.

Moreover, we will show in Section 3 that r⊤xs1/2,kR
−1
xx rxs1/2,k >>

r⊤xs1/2,j ̸=kR
−1
xx rxs1/2,k, which makes it very difficult for an unsu-

pervised model with a small amount of segments K to overcome this
bias. This promotes fast convergence to local, suboptimal minima,
especially when K is small (i.e. for small datasets).

To remove this bias, the cross-correlation vector rxs should be
estimated without the current segment k, as done in Algorithm 2.
This removes the inherent overfitting that caused the bias. This can
be done with minimal additional computational cost, e.g. by sub-
tracting rxs1/2,k from the sum of all K cross-correlation matrices.

Although Algorithm 2 focuses on a two-speaker problem, this
algorithm can easily be expanded to scenarios with more than two
speakers. In this case, only the speech envelope that is the most
correlated with the reconstructed envelope is classified as attended.
Similar to before, only envelopes classified as attended are used to
estimate the cross-correlation matrix in the next iteration.



Algorithm 2: Unbiased unsupervised AAD
Compute Rxx as in (5).
while l changes do

for k ∈ [1 . . .K] do

rxs =

K∑
j=1,j ̸=k

l
(i)
j rxs1,j + (1− l

(i)
j )rxs2,j

ρ1/2,k = r⊤xsR
−1
xx rxs1/2,k,

l
(i+1)
k = 1 if ρ1,k > ρ2,k, else l

(i+1)
k = 0,

with rxs1/2,j as defined in (5).

3. EXPERIMENTS

In this section, we compare the proposed unbiased unsupervised
algorithm with the (biased) unsupervised algorithm from [7]. We
will also compare both unsupervised algorithms with a supervised
subject-specific and subject-independent least-squares model pro-
posed in [4].

3.1. Dataset

We validate the algorithms on a publicly available dataset [8]. In this
dataset, a 64-channel EEG signal of 16 Flemish speaking subjects is
measured as they are attending to one of two competing Flemish
stories. All stories are narrated by male speakers in 12 trials of 6
minutes each. The speakers are located at the left and right side of
the subject. 72 minutes of data are recorded in total per subject with
a BioSemi ActiveTwo system. For more details, we refer to [4, 8].

The EEG signals and the auditory stimuli are preprocessed ac-
cording to the preprocessing framework proposed in [4]. The au-
ditory stimulus y(t) is first split in frequency bands yb(t) using a
gammatone filter bank with center frequencies between 150Hz and
4000Hz. The auditory envelope is then extracted from each subband
by applying the power-law operation sb(t) = |yb(t)|0.6. Finally all
subband envelopes are added with equal weight. This process is re-
peated for both the attended and unattended stimulus.

The EEG signals and the envelopes are then bandpass filtered
between 1Hz and 9Hz and resampled to a 64Hz sample frequency.
They are then all cut in segments of length T . Finally, the mean
is subtracted from each segment and each envelope segment is nor-
malised such that rss1/2,k = 1.

3.2. Hyperparameters

Unless stated otherwise, all 72 minutes of EEG are used for each
subject, each segment is T = 60 s ∗ 64Hz long and the different
EEG lags l are selected between 0 and L = 0.25 s ∗ 64Hz. No
regularisation is used to estimate the correlation matrices.

3.3. Experiments

In a first experiment, we assess the influence of the bias on the fi-
nal decision. As explained in Section 2, this bias promotes labels in
the next iteration to be identical to the labels in the current iteration.
First, we will assess the magnitude of this bias term in comparison
with the average magnitude of the other terms. We will also study

how this bias influences the performance of the unsupervised algo-
rithms in function of the number of segments K in the dataset. For
every value of K ∈ [2, 72], we compute the accuracy of both the
original, biased and the proposed unbiased unsupervised AAD al-
gorithm. Both iterative algorithms are run until they converge to a
fixed point [7]. The accuracy is computed by comparing their pre-
dicted labels to the ground-truth. This experiment is repeated 10
times with a different subset of segments when possible. Since both
algorithms are unsupervised and inherently give a classification as
output, no cross-validation procedure is used. Note that [7] validates
Algorithm 1 on new data. This equates to adding a single iteration
of Algorithm 2 after Algorithm 1, lowering the effect of the bias.

In a second experiment, we compare the performance of both
unsupervised algorithms with a supervised subject-specific and a
subject-independent algorithm for various segment lengths using the
full dataset. The unsupervised algorithms are validated as explained
above. The supervised subject-specific algorithm [4] is validated dif-
ferently, using leave-one-out cross-validation, i.e. segment k is clas-
sified by a model trained on all segments j ̸= k ∈ [1,K]. The
subject-independent algorithm is validated using leave-one-subject-
out cross-validation.

All statistical significance is tested with a non-parametric and
paired Wilcoxon signed rank test (significant if p < 0.05).

3.4. Results and discussion

The average magnitudes of the bias term and the other terms are
shown in Table 1. The bias term is on average 30 times larger than
any other term. This makes it very difficult for the original unsuper-
vised algorithm to correct wrong initial labels when the number of
segments K is small. Indeed, Figure 1 shows that the bias causes the
algorithm to perform at chance level at K = 20, whereas the unbi-
ased algorithm only performs 5% worse at K = 20 than at K = 72.
Remarkably, the unbiased algorithm still obtains 61% accuracy at
K = 2, where the segment is decoded using a decoder trained on
just 1 neighbouring segment.

Bias: r⊤xs1/2,kR
−1
xx rxs1/2,k Other: r⊤xs1/2,j ̸=kR

−1
xx rxs1/2,k

1.4e− 4± 4.5e− 5 5.0e− 6± 7.4e− 6

Table 1: The mean and standard deviation of the bias term in com-
parison to the other terms from (9) (T = 60 s).

Figure 2 shows that the unbiased unsupervised model performs
significantly better than the original algorithm for long segments
with T > 10 s when the full dataset is used. Since the amount of
data is kept constant in this experiment, the number of segments
increases as the segments shorten. This causes the bias to be less
influential.

4. CONCLUSION

We have shown that the unsupervised algorithm from [7] is biased
by its initialisation, which leads to poor convergence when only a
limited number of segments are available (either due to limited data
or long segment length). Removing the bias is relatively straight-
forward and leads up to a 30% higher classification accuracy on the
updating set itself when only 20 segments are available. However, as
more segments become available, the influence of the bias steadily
diminishes. This makes the unbiased unsupervised AAD algorithm
well suited for use in applications where only a limited amount of
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Fig. 1: The unbiased algorithm significantly outperforms the orig-
inal algorithm for any number of segments. The difference in ac-
curacy on the updating set is maximal around K = 20, where the
original unsupervised algorithm does not perform better than chance,
whereas the unbiased unsupervised algorithm has barely dropped in
performance. The shaded area represents the standard error of the
mean.

unlabelled recording is available, or in situations where the algo-
rithm must quickly adapt to changes in the signal statistics based on
a buffer with previous data of limited length.
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