AAD signal processing Into The Wild

Smart neuro-steered hearing device

Neural tracking of speech

Stimulus reconstruction

Linear spatio-temporal decoder

Stimulus reconstruction – backward decoding

Least-squares decoding

Accuracy-speed tradeoff for stimulus reconstruction

1. Low signal-to-noise ratio leads to accuracy-speed tradeoff

2. Existing AAD algorithms need to be pre-trained offline in a supervised manner, and are fixed during operation

3. Existing AAD algorithms rely on the availability of clean speech signal envelopes

4. Existing AAD algorithms often assume bulky, non-wearable EEG setups

1. Low signal-to-noise ratio leads to accuracy-speed tradeoff

2. Existing AAD algorithms need to be pre-trained offline in a supervised manner, and are fixed during operation

3. Existing AAD algorithms rely on the availability of clean speech signal envelopes

4. Existing AAD algorithms often assume bulky, non-wearable EEG setups

Existing AAD algorithms need to be pre-trained offline in a supervised manner, and are fixed during operation

Existing AAD algorithms often assume bulky, non-wearable EEG setups

Existing AAD algorithms need to be pre-trained offline in a supervised manner, and are fixed during operation

Least-squares decoder

$$\hat{f d} = {f R}_{xx}^{-1} {f r}_{xs_a}$$
 with ${f R}_{xx} = {f X}^{ ext{T}} {f X}$ and ${f r}_{xs_a} = {f X}^{ ext{T}} {f s}_a$

User-specific User-independent

Higher performance
Per-user training phase required

User-independent

Lower performance
Plug-and-play

Unsupervised stimulus decoder is still fixed

Time-adaptive unsupervised stimulus reconstruction decoding

Fixed supervised decoder

Existing AAD algorithms need to be pre-trained offline in a supervised manner, and are fixed during operation

Existing AAD algorithms often assume bulky, non-wearable EEG setups

Existing AAD algorithms need to be pre-trained offline in a supervised manner, and are fixed during operation

Existing AAD algorithms often assume bulky, non-wearable EEG setups

EEG in real life?

Wireless EEG headset

Cognionics

mBrainTrain

Miniaturized EEG

Record from CI electrode

In-ear EEG Kidmose et al. (2013)

Pasted EEG module Lehmkuhle et al. (2015)

Around-the-ear EEG ('cEEGrid') Mirkovic et al. (2016)

Seize-IT device

Printable e-skin Rogers et al. (2011)

Subcutaneously Juhl et al. (2010)

Combine multiple miniature EEG nodes at various positions

Top-down: EEG channel selection

Free placement: 64 channels \rightarrow ~8 channels without performance decrease

Existing AAD algorithms need to be pre-trained offline in a supervised manner, and are fixed during operation

Existing AAD algorithms often assume bulky, non-wearable EEG setups

A time-adaptive unsupervised stimulus reconstruction algorithm

Solution

Towards integrated in-ear and around-the-ear EEG