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Hearing aids increase quality of life of the hearing impaired

1 out of 20
now suffers from

hearing loss

Estimation: 1 out of 10
in 2050

1.1 billion
young people at

risk of hearing loss

Current hearing aids:
3 contain well-performing noise suppression algorithms (e.g., MWF)
7 but lack information on the targeted speaker in a ‘cocktail party’ scenario
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Neuro-steered hearing prostheses are the future
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The framework of AAD algorithms

EEG
decoder

prediction

envelope extraction

correlate ρ1
(e.g. = 0.26)

envelope extraction

correlate ρ2
(e.g. = 0.044)

max attended
speaker

AAD = auditory attention detection
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The p(τ)-performance curves of AAD algorithms
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However, AAD algorithms are evaluated in literature in a
non-standardized fashion

1 Multiple decision window lengths and accuracies represent the
performance . . .

2 . . . which leads to potential inconclusiveness
3 Different choice of decision window length obstructs fair comparison
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In search of a suitable performance metric: the
requirements

A performance metric for AAD algorithms should be:
1 single-number (allows for ranking, statistics, . . . )
2 interpretable
3 combining accuracy and decision time
4 independent of evaluated decision window lengths

which motivates the design of a new metric: the

expected switching time (EST)
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Modeling an adaptive gain control system as a Markov
chain is crucial
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x = 0 x = (i− 1)δ
δ

x = (N − 1)δ = 1

Attended speakerUnattended speaker Target direction

hidden: τ

Known parameters from the AAD algorithm: p, τ
Free design parameter: N (smoothness vs switching speed)
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The Markov chain as adaptive gain control system: an
example

Predicted audio

Attended audio

Unattended audio
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x = 0 x = 1
Attended speakerUnattended speaker

Target direction

Attention switch 1→ 4
Path 1

Switching time

AAD algorithm
with p = 80%
for 5 s windows
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The design of the expected switching time consists of
several subproblems

Expected switching time: definition in words
The expected switching time (EST) is the expected time required to reach
the P0-confidence interval, containing the comfortable level c, after an
attention switch, in an optimized Markov chain as a model for an adaptive
gain control system in a neuro-steered hearing prosthesis.
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The design of the expected switching time consists of
several subproblems

Expected switching time (EST)
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The P0-confidence interval of the Markov chain model
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The P0-confidence interval can be found by searching for the largest k̄ such
that:

N∑
j=k̄

π(j) ≥ P0 ⇔ k̄ =
⌊

log
(
rN (1− P0) + P0

)
log(r) + 1

⌋
,

using

r = p

1− p and steady-state distribution π(i) = r − 1
rN − 1r

i−1
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The P0-confidence interval of the Markov chain model
The P0-confidence interval

[x̄, 1] =
[
k̄ − 1
N − 1 , 1

]
,

with

k̄ =
⌊

log
(
rN (1− P0) + P0

)
log(r) + 1

⌋
,

Example: the 90%-confidence interval of this Markov chain
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Design constraints on the Markov chain: optimizing free
design parameter N
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Design constraints on the Markov chain: optimizing free
design parameter N

Given (τ, p)-performance, two goals:
1 Optimize free design parameter N
2 Interpret model in hearing aid context

result in two design criteria:
1 x̄ ∈ [c, 1], with c a predefined desired lower bound of the P0-confidence

interval
2 N ≥ Nmin: obtain smooth transitions in the gain adaptation
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Design constraints on the Markov chain: optimizing free
design parameter N
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Design constraints on the Markov chain: optimizing free
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Design constraints on the Markov chain: optimizing free
design parameter N
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The transit time: the expected time needed to arrive in
target state k̄, starting from any initial state i < k̄

Expected switching time (EST)

Optimal number
of states N

Quantification of
switching time
in Markov chain

Optimal working
point (τ, p) on

performance curve

optimal
Markov chain switching

time

optimal
Markov chain

1 x̄ ∈ [c, 1]
2 N ≥ Nmin

Transit time: T (p(τ), τ,N)
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Decision window length [s]
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The transit time: the expected time needed to arrive in
target state k̄, starting from any initial state i < k̄

An attention switch
An attention switch is defined as the transition from any initial state i < k̄
outside the P0-confidence interval to lower bound k̄.
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The transit time: the expected time needed to arrive in
target state k̄, starting from any initial state i < k̄

An attention switch
An attention switch is defined as the transition from any initial state i < k̄
outside the P0-confidence interval to lower bound k̄.

We call the associated switching time the transit time:

T (p(τ), τ,N) = τE{s|i→ k̄, ∀ i < k̄} = τ

+∞∑
s=0

sP (s|i→ k̄,∀ i < k̄)

= τ
rk̄+1 − rk̄

rk̄ − r

k̄−1∑
i=1

r−ihk̄(i),

with mean hitting time hj(i) = E{s|i→j} = j−i
2p−1 + p(r−j−r−i)

(2p−1)2 ,∀ i ≤ j
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Optimizing the transit time over the performance curve
results in the EST (bis)

Expected switching time (EST)

Optimal number
of states N

Quantification of
switching time
in Markov chain

Optimal working
point (τ, p) on

performance curve

optimal
Markov chain switching

time

optimal
Markov chain

1 x̄ ∈ [c, 1]
2 N ≥ Nmin

Transit time:
T (p(τ), τ,N) =

τ rk̄+1−rk̄

rk̄−r

k̄−1∑
i=1

r−ihk̄(i)
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Optimizing the transit time over the performance curve
results in the EST (bis)
? At which accuracy p and decision window length τ should the Markov
chain be optimized and the transit time computed?

1 Construct the p(τ)-performance curve via linear interpolation
2 Sample the p(τ)-performance curve
3 Pick the working point with the lowest transit time
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Optimizing the transit time over the performance curve
results in the EST (bis)
? At which accuracy p and decision window length τ should the Markov
chain be optimized and the transit time computed?

1 Construct the p(τ)-performance curve via linear interpolation
2 Sample the p(τ)-performance curve
3 Pick the working point with the lowest transit time

leads to the expected switching time
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0.5

0.75

1

EST = 43.36 s

Decision window length [s]
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Bringing it all together: the expected switching time

Expected switching time (EST)

Optimal number
of states N

Quantification of
switching time
in Markov chain

Optimal working
point (τ, p) on

performance curve

optimal
Markov chain switching
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Markov chain
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Bringing it all together: the expected switching time

Expected switching time: full definition
The expected switching time (EST) is the expected time required to reach
the P0-confidence interval1, containing the comfortable level c, after an
attention switch, in an optimized Markov chain as a model for an adaptive
gain control system in a neuro-steered hearing prosthesis. It is the solution of
the following optimization problem:

EST = min
N,τ

T (p(τ), τ,N)

s.t. x̄ ∈ [c, 1]
N ≥ Nmin

where T (p(τ), τ,N) is the transit time and x̄ = k̄−1
N−1 , with k̄ the lower

bound of the P0-confidence interval.

The computation of the EST is easy given that T (p(τ), τ,N) is
monotonically nondecreasing with N

1Starting from a stochastically defined initial state based on the steady-state distribution
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The framework of AAD algorithms
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MMSE as example of backward AAD decoder

Basic approach via MMSE: (O’Sullivan et al., 2014)

min
dn(l)

E{(satt(t)−
N∑
n=1

L−1∑
l=0

dn(l)xn(t+ l))2},

with N = number of channels (64) and L = length integration window
(250 ms). Vectorized solution:

d̂ = R−1
xx rxsatt
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MMSE as example of backward AAD decoder

trials of data
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Averaging decoders vs autocorrelation matrices: what
does the EST decide?
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Averaging decoders vs autocorrelation matrices: what
does the EST decide?
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Averaging decoders vs autocorrelation matrices: what
does the EST decide?
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EST [s]

A paired, one-sided Wilcoxon signed rank test shows that averaging autocorrelation
matrices > averaging decoders
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Interested in using the EST metric?
https://github.com/exporl/est-toolbox

Questions? Remarks? Thoughts? Ideas?
simon.geirnaert@esat.kuleuven.be

STADIUS
Center for Dynamical Systems, 

Signal Processing and Data Analytics

KU  LEUVEN
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Hyperparameter choice: Nmin, P0 and c

EST = min
N,τ

T (p(τ), τ,N)

s.t. x̄ ∈ [c, 1]
N ≥ Nmin

Three parameters involved in the design constraints:

• Nmin = 5
• c = 0.65
• P0 = 0.9
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Three parameters involved in the design constraints:
• Nmin = 5
• c = 0.65
• P0 = 0.9
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The EST in case dependent decisions due to overlapping
decision windows

Independence condition in Markov chain is violated when there is overlap in
decision windows.
Two questions:

1 What is the difference between ESTdep and theoretical EST?
2 Is the theoretical EST still a valid relative performance metric?
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The EST in case dependent decisions due to overlapping
decision windows
Independence condition in Markov chain is violated when there is overlap in
decision windows.
Two questions:

1 What is the difference between ESTdep and theoretical EST? Acceptable
2 Is the theoretical EST still a valid relative performance metric?
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The EST in case dependent decisions due to overlapping
decision windows

Independence condition in Markov chain is violated when there is overlap in
decision windows.
Two questions:

1 What is the difference between ESTdep and theoretical EST? Acceptable
2 Is the theoretical EST still a valid relative performance metric? Yes

1 98.6
5 99.3

10 98.4
20 98.8
30 98.7

Consistency percentage [%]

DWL [s]

5 97.6
15 95.8
25 96.0
35 97.7
45 100
55 100
65 99.2
75 99.5
85 99.4
95 99.7

Consistency percentage [%]

Overlap [%]

Average consistency = 98.73%
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The algorithm to compute the EST
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Comparison between less interpretable ITR and EST
Information transfer rate (ITR [ bits ]) is defined as:

ITR = 1
τ

(
log2M + p log2 p+ (1− p) log2

1− p
M − 1

)
,

with M = 2 here.

0 190

0

3

Evaluated points

Fitted rational model

EST [s]
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[ bitmin ]
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