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Hearing aids increase of the hearing impaired

1 out of 20
now suffers from
hearing loss

1.1 billion
young people at
risk of hearing loss

Estimation: 1 out of 10
in 2050

Current hearing aids:
v/ contain well-performing noise suppression algorithms (e.g., MWF)
X but lack information on the targeted speaker in a ‘cocktail party’ scenario
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Neuro-steered hearing prostheses are the future
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The framework of AAD algorithms
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The p(7)-performance curves of AAD algorithms
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(Deckers et al., 2019)
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However, AAD algorithms are evaluated in literature in a

non-standardized fashion

1 Multiple decision window lengths and accuracies represent the
performance . ..

(de Cheveignéetial., 2018)

(O'Sullivan et al., 2014)

(Deckers et al., 2019)
(Alickovic et al., 2019)

Accuracy 0.75
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However, AAD algorithms are evaluated in literature in a

non-standardized fashion

1 Multiple decision window lengths and accuracies represent the
performance . ..
2 ...which leads to potential inconclusiveness

(de Cheveignéetial., 2018)
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However, AAD algorithms are evaluated in literature in
non-standardized fashion

1 Multiple decision window lengths and accuracies represent the
performance . ..

2 ...which leads to potential inconclusiveness
3 Different choice of decision window length obstructs fair comparison

A Subject-Specific ,
os
3
HY
§or
3
o)
©
os
% T ————
% 0 2 ) ©
Subject Fig. 2: Mcan (burs) and individual subject (circles) detcetion uccura-
e fo cach of he diferen: emclope <xiscion methods for » o
fength of 305 The dotied back line a1 379 indicte he ~ubjct
speciis dolection e 1 only 5% fikely to be supateed
100, by chance. based on a binomial distribution (success rate = 0.5,
number of trials = 144).
w0
€ ) d
g [
£ (X
g7 =
-] -~ 1
3 o g 4
©
“
Ve e

Fig. S: Atention decoding performance on 20 s trials: SIGEVD based forward modeling compared to forward modeling with
o ha

mean decoding accuracy . v 1 the plo. comparisons between methods are done using
Wilcoxon's signed-rank tess:

5/17



In search of a suitable performance metric: the
requirements

A performance metric for AAD algorithms should be:
1 single-number (allows for ranking, statistics, ...)
2 interpretable
3 combining accuracy and decision time
4 independent of evaluated decision window lengths

which motivates the design of a new metric: the

expected switching time (EST)
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Modeling an adaptive gain control system as a Markov

chain is crucial
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The Markov chain as adaptive gain control system: an

example

Unattended speaker . Attended speaker
Target direction

Attention switch
Path
Switching time

1—4
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The Markov chain as adaptive gain control system: an

example
X
Unattended audio
Predicted audio
4

Attended audio

Unattended speaker o Attended speaker
Target direction

AAD algorithm
with p = 80%
for 5s windows

Attention switch 1 — 4
Path 1
Switching time
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The Markov chain as adaptive gain control system: an

example
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Predicted audio
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AAD algorithm
with p = 80%
for 5s windows

Attention switch 1—4
Path 1,2,3,2,3,4
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The design of the expected switching time consists of
several subproblems

Expected switching time: definition in words

The expected switching time (EST) is the expected time required to reach
the Py-confidence interval, containing the comfortable level ¢, after an
attention switch, in an optimized Markov chain as a model for an adaptive
gain control system in a neuro-steered hearing prosthesis.
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The design of the expected switching time consists of

several subproblems

Optimal number
of states N

Expected switching time (EST) |

Quantification of
switching time
in Markov chain

Optimal working
point (7,p) on
performance curve

1

Accuracy  0.75

R
1 10 20 30 40 50 60
Decision window length 5]
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The Fy-confidence interval of the Markov chain model
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The Py-confidence interval can be found by searching for the largest k such
that:
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The Fy-confidence interval of the Markov chain model

The Py-confidence interval

k—1
z,1l=|——,1
[x7 ] [N—]_’ }7
with

= log (’I"N(l = P()) + P())
S \‘ log(r) 1J ’

Example: the 90%-confidence interval of this Markov chain
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0.8 0.8 0.8 038
=0 r=1
Unattended speaker Attended speaker

Target direction

is [0.75,1] (k = 4)
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Design constraints on the Markov chain: optimizing free
design parameter N

Expected switching time (EST) |

- Quantification of Optimal working
Optimal number L ) .
switching time point (7,p) on
of states N . .
in Markov chain performance curve
¢oeo 0 Eoo
e Accuracy .75
Ut s andd st
0.5
e
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Design constraints on the Markov chain: optimizing free
design parameter N

Given (7, p)-performance, two goals:

1 Optimize free design parameter N

2 Interpret model in hearing aid context
result in two design criteria:

1 Z € [e, 1], with ¢ a predefined desired lower bound of the Py-confidence
interval

2 N > Npin: obtain smooth transitions in the gain adaptation
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Design constraints on the Markov chain: optimizing free
design parameter N
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Design constraints on the Markov chain: optimizing free
design parameter N
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Design constraints on the Markov chain: optimizing free

design parameter N
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Design constraints on the Markov chain: optimizing free

design parameter N
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Design constraints on the Markov chain: optimizing free
design parameter N
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Design constraints on the Markov chain: optimizing free
design parameter N
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Design constraints on the Markov chain: optimizing free

design parameter N
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Design constraints on the Markov chain: optimizing free
design parameter N
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The transit time: the expected time needed to arrive in
target state k, starting from any initial state ¢ < k

|Expected switching time (EST)l

Optimal number Quantification of Optimal working
pf tee N switching time point (7,p) on
o e in Markov chain performance curve
1
1
2 Accuracy  0.75

L
1 10 20 30 40 50 60
Decision window length [s]

12/17



The transit time: the expected time needed to arrive in
target state k, starting from any initial state ¢ < k

An attention switch

An attention switch is defined as the transition from any initial state i < k
outside the Py-confidence interval to lower bound k.

«

q P
i i q q q q q
o
7
%
727777 .
% 777 f‘_ﬁ
P P, 3 P P
C

z=0 rz=1
Unattended swded speaker

Target direction

N
X

Y

12/17



The transit time: the expected time needed to arrive in
target state k, starting from any initial state ¢ < k

An attention switch

An attention switch is defined as the transition from any initial state i < k
outside the Py-confidence interval to lower bound k.

We call the associated switching time the transit time:

—+o0
T(p(7), 7, N) = 7E{sli—k,Vi <k} =7 _ sP(s|i—kVi<k)
s=0
PRl kk 1

—1
ok Zr hi ()
Tt =T

=1

with mean hitting time /o, (i) = E{sli—j} = g=t + 2020 i <

12/17



Optimizing the transit time over the performance curve
results in the EST (bis)

| Expected switching time (EST) |

- Quantification of Optimal working
Optimal number L X :
switching time point (7,p) on
of states N . .
in Markov chain performance curve
1
1
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0.5
1 10 20 30 40 50 60

Decision window length [s]
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Optimizing the transit time over the performance curve
results in the EST (bis)

7 At which accuracy p and decision window length 7 should the Markov
chain be optimized and the transit time computed?

Accuracy 0.75

1 1
1 10 20 30 40 50

Decision window length [s]

60
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Optimizing the transit time over the performance curve
results in the EST (bis)

7 At which accuracy p and decision window length 7 should the Markov
chain be optimized and the transit time computed?
1 Construct the p(7)-performance curve via linear interpolation
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Optimizing the transit time over the performance curve
results in the EST (bis)

7 At which accuracy p and decision window length 7 should the Markov
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Optimizing the transit time over the performance curve
results in the EST (bis)

7 At which accuracy p and decision window length 7 should the Markov
chain be optimized and the transit time computed?

1 Construct the p(7)-performance curve via linear interpolation

2 Sample the p(7)-performance curve

Accuracy 0.75 |-

1 1 1 1 1 |
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Optimizing the transit time over the performance curve
results in the EST (bis)
7 At which accuracy p and decision window length 7 should the Markov
chain be optimized and the transit time computed?

1 Construct the p(7)-performance curve via linear interpolation

2 Sample the p(7)-performance curve
3 Pick the working point with the lowest transit time

leads to the expected switching time

1~

Accuracy 0.75 |-

EST = 43.36s

1 1
1 10 20 30 40 50 60
Decision window length [s]
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Bringing it all together: the expected switching time

Expected switching time (EST)l

Optimal number
of states N

Quantification of Optimal working
switching time point (7,p) on
in Markov chain performance curve
1
Accuracy  0.75
EST = 43.36s

o
1 10 20 30 40 50 60
Decision window length [s]
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Bringing it all together: the

Expected switching time: full definition

The expected switching time (EST) is the expected time required to reach
the Py-confidence interval , containing the comfortable level ¢, after an
attention switch, in an optimized Markov chain as a model for an adaptive
gain control system in a neuro-steered hearing prosthesis. It is the solution of
the following optimization problem:

EST = min T(p(r),7,N)

N,t
st. T €lgl]
N 23 ]\Enin

where T'(p(7), 7, N) is the transit time and Z = % with k the lower
bound of the Py-confidence interval.

The computation of the EST is easy given that T'(p(7), 7, N) is
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The framework of AAD algorithms
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MMSE as example of backward AAD decoder

Basic approach via MMSE:

L—

N
min E{(sa:(t) — dn(Dzn(t+1)
i E{(sae(t) = 30 3 dulthan(e + %)

—

with N = number of channels (64) and L = length integration window
(250 ms). Vectorized solution:

q_ —1
d= Rzz Tasa
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MMSE as example of backward AAD decoder
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MMSE as example of backward AAD decoder
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MMSE as example of backward AAD decoder
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MMSE as example of backward AAD decoder

averaging
decoders
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averaging
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Averaging decoders vs autocorrelation matrices: what
does the EST decide?

1,

Averaging autocorrelation matrices

Accuracy 0.75 -
y Averaging decoders
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Decision window length [s]
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Averaging decoders vs autocorrelation matrices: what
does the EST decide?

1~
Averaging autocorrelation
matrices (EST = 43.365s)

Accuracy 0.75 -

Averaging decoders
(EST = 83.685s)

0.5+
\ ! ! ! ! ! \

1 10 20 30 40 50 60
Decision window length [s]

17/17



Averaging decoders vs autocorrelation matrices: what
does the EST decide?

++

A paired, one-sided Wilcoxon signed rank test shows that averaging autocorrelation
matrices > averaging decoders
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Interested in using the EST metric?

Questions? Remarks? Thoughts? ldeas?

T c Research Foundation
sr®RL I WO i
Opening new horizons
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Hyperparameter choice: N, ) and ¢

EST = win T(p(T),7,N)

st. T €lql]
N Z Nmin

Three parameters involved in the design constraints:
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Hyperparameter choice: N, ) and ¢

EST = min T(p(r),7,N)

N,t
st. T €lql]
N 2 Nmin

Three parameters involved in the design constraints:

o ]Vmin:5
q . p
p p p
z=0 r = 0.5 r=1

Unattended speaker Target direction Attended speaker
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Hyperparameter choice: N, ) and ¢

EST =

min
N,t

s.t.

T(p(7),,N)

z € e 1]
N Z Nmin

Three parameters involved in the design constraints:

® min:5

® ¢c=0.65
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Hyperparameter choice: N, ) and ¢

EST = min T(p(r),7,N)

N,t
st. T €lql]
N 2 Nmin

Three parameters involved in the design constraints:
® Nmin =5
°® ¢c=0.65
° P,=0.9

Po =09
(chosen confidence level)

Py
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The EST in case dependent decisions due to overlapping
decision windows

Independence condition in Markov chain is violated when there is overlap in
decision windows.
Two questions:

1 What is the difference between ESTg4ep and theoretical EST?
2 Is the theoretical EST still a valid relative performance metric?
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The EST in case dependent decisions due to overlapping
decision windows
Independence condition in Markov chain is violated when there is overlap in
decision windows.
Two questions:
1 What is the difference between ESTge, and theoretical EST? Acceptable
2 Is the theoretical EST still a valid relative performance metric?
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The EST in case dependent decisions due to overlapping
decision windows

Independence condition in Markov chain is violated when there is overlap in
decision windows.
Two questions:

1 What is the difference between ESTge, and theoretical EST? Acceptable
2 Is the theoretical EST still a valid relative performance metric? Yes

Consistency percentage [%]

» 99.7

Consistency percentage [%] 85 o

‘ o 99.5

30 . r, s

20 98.8 ” .
e 0 984 Overlap [%] 7.

’ 993 1o 100

; 98.6 9 077

> 96.0

" 95.8

’ 97.6
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The algorithm to compute the EST

Algorithm 1 Computation of the EST metric

Input: Evaluated points on the p(7)-performance curve (73, p;).i € {1,.... I}, the required number of interpolated samples
K of the performance curve p(7) and the hyperparameters: confidence interval Py, lower bound ¢ and minimum number of
states Npyin. The suggested default values are K = 1000, Py = 0.9, ¢ = 0.65 and Ny = 5 (see Section ,

Output: EST

1: Construct I’ samples of the performance curve p(7) by piecewise linear interpolating through evaluated points (7. p;), i €

for each sampled 7 do
Find N; by going over the candidate values N = N, + 4, with ¢ = 0,1,2, ..., in this specific order, until the first
value NV is found that satisfies:

» N

Qma
N-1-%

and N > Ny,

log(r™ (1-Po)+Po)
log(r)

with & = { + 1J and 1 = £

pr=F—r=1)

4 Given N, compute the transit time T'(p(7), 7, ] ' hi (i), with hy(i) = fp%’l + S

5: end for
6: The EST is equal to the minimum transit time over all sampled 7:

EST= min T(p(r), 7, N,).
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Comparison between less interpretable ITR and EST

Information transfer rate (ITR [2]) is defined as:

1 1—p
ITR = - <log2M+plog2p+ (1 —p)log, m) ,

with M = 2 here.

Fitted rational model

ITR
2]

Evaluated points

|
0 190
EST [s]
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